COP22 Japan Side Event "Efforts toward satellite data utilization for IPCC Guideline of GHG Inventories" Japan Pavilion, Marrakesh, Morocco,

13:00-14:30, 14 November 2016

OSAT and GOSAT-2 missions for successive GHG monitoring

<u>Kei Shiomi</u> Japan Aerospace Exploration Agency shiomi.kei@jaxa.jp

GOSAT CO₂ and CH₄ over 7.5 years

Monthly mean global CO₂ and CH₄ since 2009

Global XCO₂ L3 map

Global XCH₄ L3 map

The typical accuracy of retrieved column-averaged dry air mole fractions of CO_2 and CH_4 are 2ppm or 0.5% and 13ppb or 0.7%, respectively.

Optimization of observation points

GOSAT-2 specifications

GOSAT-2 observation scheme

Full programmable target pointing
Intelligent pointing for avoiding cloud

Strategic observation by full programmable target pointing

CO₂ emission database

Different emission patterns

CH₄ emission database

EDGAR v4.2, EC, JRC/PBL

- Clear sky area by using cloud cover climatology
- Reducing observation uncertainty (less surface roughness, low aerosol, view direction etc.)
- Observation numbers and locations for flux inversions

Intelligent pointing for clear-sky data

The GOSAT-2 FTS views pre-determined programming locations. However, cloud scene is an interference of GHG observation in the surface layer.

The intelligent pointing system is an automatically detection of the cloud area on orbit by using visible monitor camera and changing the pointing direction before the data acquisition.

GOSAT-2 development schedule

Space-borne GHG monitoring with partners

SCIAMACHY (ESA)	GOSAT (Japan)	OCO-2 (NASA) 2014-present	TanSat (China)	TROPOMI / S-5P
CO ₂ , CH ₄	CO_2, CH_4	CO ₂	CO ₂	CH ₄
GOSAT-2 (Japan)	OCO-3 (NASA)	MicroCarb (CNES)	MERLIN	Future proposals
2018-	2018-	2020-	(CNES/DLR)	
CO ₂ , CH ₄	CO ₂	CO ₂ , CH ₄	2021-	UVNS / S-5
			CH ₄	(Europe)
				Lidar mission (NASA) Carbon mission (Europe)

Continuous GHG measurement from space will contribute to reveal global and regional carbon flux change.