ALOS-2校正検証•利用研究 ALOS-2 CAL/VAL and Application Researches

島田政信 第一宇宙技術部門地球観測研究センター Masanobu Shimada Earth Observation Research Center, Space TechnologyDirectorate I, JAXA 2015年11月17日

PALSARからPALSAR2へ

画質と改善

精度(Geometry, Radiometry)

アプリケーション (Interferometry-Polarimetry-ATI-森林)

まとめ

Range ambiguities in PALSAR images

Imaging and calibration Strategy (i.e., Range Doppler)

	no	HH updown	0-pai	mode	en re	no HV	updown	0-pai	moden	repID
	0	1	0	1	0	0	1	0	1	0
	1	1	0	1	0	1	1	0	1	0
	2	0	0	0	0	2	0	0	0	0
	3	0	0	0	0	3	0	0	0	0
	4	1	0	1	0	4	1	0	1	0
	5	1	0	1	0	5	1	0	1	0
	6	0	0	0	0	6	0	0	0	0
	7	0	0	0	0	7	0	0	0	0
	8	1	0	1	0	8	1	0	1	0
	9	1	0	1	0	9	1	0	1	0
	10	0	0	0	0	10	0	0	0	0
	11	0	0	0	0	11	0	0	0	0
	12	1	0	1	0	12	1	0	1	0
	13	1	0	1	0	13	1	0	1	0
	14	0	0	0	0	14	0	0	0	0
	15	0	0	0	0	15	0	0	0	0
	16	1	1	3	0	16	1	1	3	0
	17	1	1	3	0	17	1	1	3	0
	18	0	0	0	0	18	0	0	0	0
٦ï۲	19	0	0	0	0	19	0	0	0	0
ด	20	1	1	3	Shimad	a 20 5 ALOSI	PI 1	1	3	0 7

One example of the UD-chirp and the azimuth phase codings (UBD)

UB HH image

2014/6/19

伊豆大島

ALOS-2 Schedule and status

ALOS-2 is in good condition and the everything is on-going.

2014

 \geq

2015

- > May 24-26 launched and PALSAR-2 antenna deployed.
- June 19-21 PALSAR-2 first images were acquired.
- Aug. 4 Initial Calibration started
- Aug. 20 Move to the operational observation phase.
 - Nov. 25 starts the product distribution

Ongoing global observation and the emergency observation

Routine Cal.

PALSAR-2 mode and specifications (モードと仕様値)

Mode		Spotlight (SB)	Ultra Fine (UB)	High Sensitive (HB)	Fine (FB)	ScanSAR Nominal (WB)		ScanSAR Wide (VB)
Bandwidth		84MHz	84MHz	42MHz	28MHz	14MHz	28MHz	14MHz
Resolution		Rg×Az: 3×1m	3m	6m	10m	100m(3 looks)		60m(1.5 looks)
Swath		Rg × Az : 25 × 25km	50km	50km	70km	350km 5scan		490km 7scan
Polarization		SP	SP/DP	SP/DP	FP/CP	SP/D		2
NE	SZ	-24dB	-24dB	-28dB	-26dB	-26dB	-23dB	-23dB
S/A	Rg	25dB	25dB	23dB	25dB	25dB		20dB
	Az	20dB	25dB	20dB	23dB	200	я́В	20dB
REC		D	D	D	S	D		D
DC		B4	DB4IIDB2	B4IIDB4	B4IIDB4	B	4	R4

SP:HH or VV or HV,DP:HH+HV or VV+VH,FP:HH+HV+VH+VV,CP:Compact pol (Experimental mode) REC: Number of receivers(受信機数:D:Dual, S: Single), DC:Data Compression, DB4:DS-BAQ4,B4:BAQ4

Spotlight (S):	Detail observation of damaged area
Ultra Fine(U):	High Resolution (Japan area baseline)
High sensitive(H):	Flood / Coast monitoring
Fine(F):	Global observation (deformation/forest)
ScanSAR nominal(W):	ScanSAR InSAR (28MHz)
ScanSAR wide(V):	Ice monitoring, Ship detection

Distribution of the gamma-zero from the amazon data

Shimada 2015 ALOSPI

UBS

-7.7

0.297981

9

PALSAR-2 Images (UB, HB, FB)

Strip mode(UB, HB, FB)

UB:Quebec(2014/06/20)

FBD 2014/07/08

J1 2014/8/13 Ascending FP6-7 Path29

Site1

HBQ-RioBranco 12

PALSAR-2 Images (Spotlight and Ultra Fine)

PALSAR-2 Images (ScanSAR)

Area: Hokkaido Bandwidth: 28 MHz Mode: W(5 scans)

ScanSAR: Amazon Rondonia area (HH)

Global calibration site) (5/12)

CVST All Sites

30

Red circle and square indicates OR sites (including JAXA Cal sites)

FBD282/RSP076/2014.10.19/Alaska01(CR3.0m)

4.2.8 幾何精度評価結果(Strip(U-H-F))

レンジオフセットの調整により幾何学精度の向上

5.34m (RMSE)

mode	dx1平均值[m]	dx1標準偏差	dy平均值[m]	dy標準偏差	評価点数	RMSE
A/L	0.839451	2.563070	2.574452	2.080054	7	4.23
A/R	-2.874292	2.035313	2.808302	1.734837	58	4.83
D/L	3.835954	5.598194	-5.899280	3.284252	14	9.57
D/R	-1.151538	1.987740 ^{Shi}	mada 2015 ALOSPI -3.185586	1.653553	48	4.26^{18}

Polarimetric Calibration (1/4)

Polarimetric Calibration (2/4)

Calibration using the sigma-sar

Polarimetric Calibration (3/4)

Determination of the channel Imbalance 2015 ALOSPI

Cross talk (dB) 21

HBQ mosaics over the RioBranco regions, 2014

23

4.2.9 校正(後方散乱係数への変換)

$$\sigma^{0_{sigma-sar,Q16}} = 10 \cdot \log_{10} \langle DN^{2} \rangle + CF_{1}$$

$$\sigma^{0_{sigma-sar, slc}} = 10 \cdot \log_{10} \langle I^2 + Q^2 \rangle + CF_1 - A$$

CF	mean(dB)	std (dB)	
CF ₁	-83.0	0.406	
А	32.0	-	

本係数は標準成果物及びEORC成
果物について共通的に成立する。

	Α
係数	数值
レンジ方 向時刻才 フセット	-22.7nsec.(-68.10mのシフ ト)
アジマス 方向オフ セット	0
ポラリメ トリック 校正係数 (一例, 23°)	Trans Distorsion = (1.0000e+00 0.0000e+00) (2.9780e- 03 2.6764e-03) (2.7118e-03 1.6514e-03) (9.1212e- 01 -4.8408e-01) Receive Distorsion = (1.0000e+00 0.0000e+00) (-3.2790e- 03 2.6533e-03) (4.7041e-03 7.2861e-03) (1.0681e+00 -1.9712e-02)

-

4.2.12 校正の結果(サマリ)

項目	測定結果		データ数	要求精度(いずれも以下,ア ンビギュイティを除く)
幾何学精度 (RMSE)	高分解能モート゛・ スポットライトモート゛	5.34m(L 1.1) / 6.73m(L 2.1)	127/129	20m
	広域観測モート	60.77m(L1.1)/29.93m(L2.1)	7/8	100m A
ラジオメトリック 精度	コーナー反射鏡 アマゾン(森林) NESZ(F/H/U) HH HV	1.31 (CF:-81.60) 0.406 (CF:-82.34) -41.1(F)/-36.0(H)/-36.6(U) -49.2(F)/-46.0(H)	120 30シーン	1.0 dB 1.0 dB:-6.84dB@アマゾン -26.0(F)/-28.0(H)/-24.0(U)
偏波	VV/HH VV-HH 位相差(deg) クロストーク (dB)	1.0143(σ:0.06) 0.350(σ:0.286) -43.7(σ:6.65) hv/hh -44.0(σ:7.10) vh/vv -48.2(σ:6.05) corr	6	1.047 5 deg -30dB -30dB -30dB
分解能(m) アジマス/レンジ	スポットライトモード 高分解能モード[3m] 高分解能モード[6m] 高分解能モード[10m]	$\begin{array}{l} 0.79(\sigma:0.028)/1.66(\sigma:0.04)\\ 2.81(\sigma:0.034)/1.70(\sigma:0.022)\\ 4.06(\sigma:0.108)/3.53(\sigma:0.317)\\ 5.05(\sigma:0.110)/5.36(\sigma:0.126) \end{array}$	3 35 28 61	1.00x1.1/1.78 2.75x1.1/1.78 3.75x1.1/3.57 5.00x1.1/5.36
サイドローブ	PSLR (アジマス) PSLR (レンジ) ISLR	-16.20(σ:2.53) -12.59(σ:1.84) -8.80(σ:3.23)	124	-13.26dB+2dB -13.26dB+2dB -10.16dB+2dB
アンビギュイ ティ	アジマス レンジ	23~14(平均:20) 視認せず	7シーン	20~25dB以上 25dB以上

注 PSLR:Peak to Sidelobe Ratio, ISLR: Integrated Sidelobe Ratio 15は高分解能モード[3m]、Hは同[6m]、Fは同[10m] あます CFの標準偏差が1.31であるが、今後の校正作業で1.0以下に調整すると同時に、アマゾン結果と調和させる。

CALVALのサマリ

幾何学精度

非常に良好

ラジオメトリック精度 非常に良好

良好

Application(応用)

- Interferometry(干涉SAR)+ATI
- Forest /Non-Forest Mosaic(森林非森林)
- Sea Ice
- Browse Generation

Bus system operation results (Attitude control)

Coherence improvement of the PALSAR-2

JERS-1/ALOS/ALOS-2の変遷において1)送信電力, 2)SNR、3)軌道制御, 4)帯域幅が向上しており, 合わせて干渉性が向上している。以下に、事例を紹介する。

From JERS-1/ALOS/ALOS-2, 1) Transmission power, SNR increases, and bandwidth increase, and autonomous orbit maintenance, improves the interferometric coherence.

Northern Nagano Earthquake (DinSAR), Nov. 22 長野県北部地震の観測(干渉SAR)

2014年長野県北 部地震は同年11 月22日22時8分 頃に、日本の長野 県北部長野県北 安曇野郡白馬村を 震源として発生し たマグニチュード 6.7の地震。長野 県は神城断層地 震と統一している。 小谷村、小川村、 長野市で最大震度 6弱を観測した。震 源断層は、白馬村 と小谷村を縦断す る神城断層であ る。

Beam Synchronizations(ビーム同期)

no_seg_abs

Shimada 2015 ALOSPI

California 20141025-20141206

Scaling reference to the beam 1 to make large SLC

Nepal-048 (20150405-20150503)

ALOS-2 干涉SAR Summary

- ・高い干渉性を保持(短いベースライン)
- ビームオーバラップ率(Beam synchronization)は80~90%.
- ・ 位相量は地殻変動などの抽出に使用可能 (ただし、電離層、水蒸気補正は要検討)
- ATIは移動体検出に初応用(高速移動体)

Deforestation in Paraguay

- •: Forest
 - : Non-Forest
- •: Deforestation
- : Reforestation

Shimada 2015 A

Deforestation in Amazon

- •: Forest
 - : Non-Forest
- •: Deforestation
- Reforestation

Deforestation in Sumatra Is.

- : Forest: Non-Forest
- Deforestation
- : Reforestation

Deforestation in Kalimantan Is.

- •: Forest
 - : Non-Forest
- •: Deforestation
- : Reforestation

Sea ice retreat around Antarctic Peninsula/Wilkins Sound

Sea ice retreat around Antarctic Peninsula/Wilkins Sound

森林•非森林(Forest/Non-Forest)

- L-band SARを用いた森林面積の変化について 観測を継続中。
- PALSAR(2007-2010)を継続するプロジェク トであり、より向上した性能を持つPALSAR-2で 森林変化の監視が可能と思われる。
 南極の氷
- 一部の地域で、氷の減少が確認される。

Conclusions(まとめ)

- PALSAR-2の校正検証が実施された。幾何学精度、ラジオメト リック精度、画質ともに良好である。初期校正、定常校正は継続 的に実施され、PALSAR-2の性能は安定している。(PALSAR-2) was calibrated on Nov. 20 2014 initially and the data were distributed since then.)
- 衛星軌道も安定しており、干渉SARを用いた地殻変動解析や森 林減少(増加)に関する解析が行われている。PALSAR CALVAL is successfully conducted and routinely monitored the quality.
- 電離層の影響がやや多く、補正に関しては今後の検討課題である。

2. Technical overview of PALSAR-2

Shimada 2015 ALOSPI