APPENDIX 1

OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM)

1. Introduction

Comprehensive observation, understanding, assessment, and prediction of global climate change are common and important issues for all mankind. This is also identified as one of the important socioeconomic benefits by the 10-year implementation plan for Earth Observation that was adopted by the Third Earth Observation Summit to achieve the Global Earth Observation System of Systems (GEOSS). International efforts to comprehensively monitor the Earth by integrating various satellites, in-situ measurements, and models are gaining importance. As a contribution to this activity, the Japan Aerospace Exploration Agency (JAXA) plans to develop the Global Change Observation Mission (GCOM). GCOM will take over the mission of the Advanced Earth Observing Satellite-II (ADEOS-II) and develop into long-term monitoring of the Earth.

As mentioned in the fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal as is now evident from observations of increases in global average air and ocean temperatures and widespread melting of snow and ice. However, climate change signals are generally small and modulated by natural variability, and are not necessarily uniform over the Earth. Therefore, the observing system of the climate variability should be stable, and should cover a long term over the entire Earth.

To satisfy these needs, GCOM consists of two medium-size, polar-orbiting satellite series and multiple generations (e.g., three generations) with one-year overlaps between consecutive generations for intercalibration. The two satellite series are GCOM-W (Water) and GCOM-C (Climate). Two instruments were selected to cover a wide range of geophysical parameters: the Advanced Microwave Scanning Radiometer-2 (AMSR2) on GCOM-W and the Second-generation Global Imager (SGLI) on GCOM-C. The AMSR2 instrument will perform observations related to the global water and energy cycle, while the SGLI will conduct surface and atmospheric measurements related to the carbon cycle and radiation budget. This chapter presents an overview of the mission objectives, observing systems, and data products of GCOM.

2. Mission Objectives

The major objectives of GCOM can be summarized as follows.

- Establish and demonstrate a global, long-term Earth-observing system for understanding climate variability and the water-energy cycle.
- Enhance the capability of climate prediction and provide information to policy makers through process studies and model improvements in concert with climate model research institutions.
- Construct a comprehensive data system integrating GCOM products, other satellite data, and in-situ measurements.
- Contribute to operational users including weather forecasting, fishery, and maritime agencies by providing near-real-time data.
- Investigate and develop advanced products valuable for understanding of climate change and water cycle studies.

Detailed explanations of the objectives are as follows.

- (1) Understanding global environment changes
 - A) Establish and demonstrate a global, long-term Earth-observing system that is able to observe valuable geophysical parameters for understanding global climate variability and water cycle mechanisms.
 - B) Contribute to improving climate prediction models by providing accurate values of model

parameters.

- C) Clarify sinks and sources of greenhouse gases.
- D) Contribute to validating and improving climate prediction models by forming a collaborative framework with climate model institutions and providing long-term geophysical datasets to them.
- E) Detect trends of global environment changes (e.g., global warming, vegetation changes, desertification, variation of atmospheric constituents, wide area air pollution, and depletion of ozone layers) from long-term variability of geophysical parameters by extracting short-term (three- to six-year) natural variability.
- F) Advance process studies of Earth environmental changes using observation data.
- G) Estimate radiative forcing, energy and carbon fluxes, and albedo by combining satellite geophysical parameters, ground in-situ measurements, and models.
- H) Advance the understanding of the Earth's system through the activities above.
- I) Contribute to an international environmental strategy utilizing the results above.

(2) Direct contribution to improving people's lives

- A) Improvement of weather forecast accuracy (particularly typhoon track prediction, localized severe rain, etc.).
- B) Improvement of forecast accuracy for unusual weather and climate.
- C) Improvement of water-route and maritime information.
- D) Provision of fishery information.
- E) Efficient coastal monitoring.
- F) Improved yield prediction of agricultural products.
- G) Monitoring and forecasting air pollution including yellow dust.
- H) Observation of volcanic smoke and prediction of the extent of the impact.
- I) Detection of forest fires.

3. Observing Systems

3.1. Overall concept

As mentioned in the previous section, the entire GCOM will consist of two satellite series spanning three generations. However, a budget will be approved for each satellite. Currently, only the GCOM-W satellite has been launched as the first satellite in the GCOM series. Both GCOM-W and GCOM-C satellites will be medium-size platforms that are smaller than the ADEOS-II satellite. This is to reduce the risk associated with large platforms having valuable and multiple observing instruments. Also, since the ADEOS-II problem was related to the solar paddle, a dual solar-paddle design was adopted for both satellites. To assure data continuity and consistent calibration, follow-on satellites will be launched so as to overlap the preceding satellite by one year. The concept is summarized in Fig. 1.

Figure 1: GCOM Concept

3.2. GCOM-W and AMSR2 instrument

Figure 2 presents an overview of the GCOM-W satellite; its major characteristics are listed in Table 1. GCOM-W will carry AMSR2 as the sole onboard mission instrument. The satellite will orbit at an altitude of about 700km and will have an ascending node local time of 13:30, to maintain consistency with Aqua/AMSR-E observations.

Figure 2: Overview of GCOM-W Satellite

Instrument	Advanced Microwave Scanning Radiometer-2 (AMSR2)
Orbit	Sun-synchronous orbit Altitude: 700km (over the equator)
Size	5.1m (X) * 17.5m (Y) * 3.4m (Z) (on-orbit)
Mass	1991kg
Power	More than 3880W (EOL)
Launch	May 18, 2012 by H-IIA Rocket
Design Life	5 years
Status	Post-Mission Phase since Nov. 2018

 Table 1: Major Characteristics of GCOM-W Satellite

Figure 1 presents an overview of the AMSR2 instrument in two different conditions. Also, basic characteristics including center frequency, bandwidth, polarization, instantaneous field of view (FOV), and sampling interval are indicated in Table 2. The basic concept is almost identical to that of AMSR-E: a conical scanning system with a large offset parabolic antenna, feed horn cluster to realize multi-frequency observation, external calibration with two temperature standards, and total-power radiometer systems. The 2.0m diameter antenna, which is larger than that of AMSR-E, provides better spatial resolution at the same orbit altitude of around 700km. The antenna will be developed based on the experience gained from the 2.0m diameter antenna for ADEOS-II AMSR except the deployment mechanism. For the C-band receiver, we adopted additional 7.3GHz channels for possible mitigation of radio-frequency interference. An incidence angle of 55 degrees (over the equator) was selected to maintain consistency with AMSR-E. The swath width of 1450km and the selected satellite orbit will provide almost complete coverage of the entire Earth's surface within two days independently for ascending and descending observations.

Figure 3: Sensor Unit of AMSR2 Instrument in Deployed (left) and Stowed (right) Conditions.

Parameter		Perfo	ormance and	d characte	ristics			
Center Frequency (GHz)	6.925/7.3	10.65	18.7	23.8	36.5	89.0		
Bandwidth (MHz)	350	100	200	400	1000	3000		
Polarization		Vertic	al and Horiz	contal pola	rization			
ΝΕΔΤ (K) ¹	< 0.34/0.43	< 0.70	< 0.70	< 0.60	< 0.70	< 1.20/1.40 ²		
Dynamic range (K)	2.7 to 340							
Nominal incidence angle (deg.)		55.0/54.5 ²						
Beam width (deg.)	1.8	1.2	0.65	0.75	0.35	0.15		
IFOV (km) Cross-track x along-track	35x62	24x42	14x22	15x26	7x12	3x5		
Approximate sampling interval (km)	10 5							
Swath width (km)	> 1450							
Digital quantization (bits)	12							
Scan rate (rpm)		40						

Table 2: Major Characteristics of AMSR2 Instrument

3.3. GCOM-C and SGLI instrument

Figure 4 gives an overview of the GCOM-C satellite; its major characteristics are listed in Table 3. GCOM-C will carry SGLI as the sole mission onboard instrument. The satellite will orbit at an altitude of about 800km; the descending node local time will be 10:30, to maintain a wide observation swath and reduce cloud interference over land.

Figure 4: Overview of GCOM-C Satellite

Table 5: Major Characteristics of GCOM-C Satellite							
Instrument	Second-generation Global Imager (SGLI)						
Orbit	Sun-synchronous orbit Altitude: 798km (over the equator)						
Size	4.6m (X) * 16.3m (Y) * 2.8m (Z) (on orbit)						
Mass	2093kg						
Power	More than 4000W (EOL)						
Launch	Dec. 23 2017 by H-IIA Rocket						
Design Life	5 years						
Status	Phase-D						

Table 3.	Maior	Char	actoristics	of	CCOM-	C Satallita
Table 5.	WIAJOF	Ullara		UI	GUUM-	Satemie

The SGLI instrument has two major new features: 250m spatial resolution for most of the visible channels and polarization/multidirectional observation capabilities. The 250m resolution will provide enhanced observation capability over land and coastal areas where the influences of human activity are most obvious. The polarization and multidirectional observations will enable us to retrieve aerosol information over land. Precise observation of global aerosol distribution is a key for improving climate prediction models.

SGLI consists of two major components: the Infrared Scanner (IRS) and the Visible and Nearinfrared Radiometer (VNR). An overview of the SGLI instrument is shown in Fig. 5 for the entire radiometer layout, IRS, and VNR components. Also, requirements for sensor performance are listed in Tables 4 and 5. VNR can be further divided into two components: VNR-Non Polarized (VNR-NP) and VNR-Polarized (VNR-P). VNR-NP and VNR-P are the 11-channel multi-band radiometer and the polarimeter with three polarization angles (0, 60, and 120 degrees). VNR-P has a tilting function to meet the scatter angle requirement from aerosol observation. The IRS is an infrared radiometer covering wavelengths from 1 μ m to 12 μ m. It consists of short infrared (SWI; 1.05 to 2.21 μ m) and thermal infrared (TIR 10.8 and 12.0 μ m) sensors. It employs a scanning mirror system with a 45degree tilted flat mirror rotating continuously to realize an 80-degree observation swath and calibration measurement in every scan.

Through intensive discussions and optimizing studies, the number of SGLI channels was decreased from the 36 channels of GLI aboard ADEOS-II to 19 channels, while the number of SGLI standard products will increase compared to those of GLI.

Figure 5: Overview of SGLI Radiometer Layout (upper), IRS Instrument (lower-left), and VNR Radiometers (lower-right).

Item	Requirement
Spectral Bands	VNR-NP : 11CH 380-865nm
_	VNR-P : 2CH 673.5, 868.5nm / 0, 60, 120deg Polarization
	IRS SWI : 4CH 1.05-2.21µm
	IRS TIR ÷ 2CH 10.8, 12.0μm
Scan Angle	VNR-NP : 70deg (Push broom scanning)
	VNR-P : 55deg (Push broom scanning)
	IRS SWI/TIR : 80deg (45deg rotation mirror scanning)
Swath width	1150km for VNR-NP/P
	1400km for IRS SWI/TIR
Instantaneous field of view	VNR-NP : 250m
(IFOV) at nadir	VNR-P : 1000m
	IRS SWI : 250m(SW3CH), 1000m(SW1,2,4CH)
	IRS TIR : 500m (250m: option)
Observing direction	±45 degrees in along track direction for VNR-P
	Nadir for VNR-NP, IRS SWI, and IRS TIR
Quantization	12bit
Absolute Calibration Accuracy	VNR : $\leq 3\%$ IRS : $\leq 5\%$ TIR : $\leq 0.5K$
Lifetime	5 Years

|--|

	СН	λ	Δλ	IFOV	SNR	L (for SNR)
		nm: VNR, IR	S SWI	m	SNR: VNR, IRS SWI	W/m ² /sr/µm
		μm: IRS TIR			NE Δ T(K): IRS TIR	
VNR-NP	VN1	380	10	250	250	60
	VN2	412	10	250	400	75
	VN3	443	10	250	300	64
	VN4	490	10	250	400	53
	VN5	530	20	250	250	41
	VN6	565	20	250	400	33
	VN7	673.5 20		250	400	23
	VN8	673.5	20	250	250	25
	VN9	763	12	250	1200 (@1km IFOV)	40
	VN10	868.5	20	250	400	8
	VN11	868.5	20	250	200	30
VNR-P	P1	673.5	20	1000	250	25
	P2	868.5	20	1000	250	30
IRS SWI	SW1	1050	20	1000	500	57
	SW2	1380	20	1000	150	8
	SW3	1630	200	250	57	3
	SW4	2210	50	1000	211	1.9
IRS TIR	T1	10.8	0.74	1000/500/250	0.2 (@500m IFOV)	300 (K)
	T2	12.0	0.74	1000/500/250	0.2 (@500m IFOV)	300 (K)

Table 5: SGLI Observation Requirement Details

4. Products

Geophysical products made available by GCOM-W and GCOM-C are listed in Tables 6, 7, and 8. There are two categories of data products: standard product and research product. A "standard" product is defined as a product with proven accuracy that is to be operationally processed and distributed. In contrast, a "research" product is a prototype for a standard product and is processed on a research basis. Both tables indicate standard products with shading.

		Resolu	Accuracy ¹				
Product	Areas	tion (km)	Release threshold	Standard	Goal	Range	
Integrated water vapor	Global, over ocean	15	$\pm 3.5 \ kg/m^2$	$\pm 3.5 \text{ kg/m}^2$	$\pm 2.0 \text{ kg/m}^2$	0-70 kg/m ²	Vertically integrated (columnar) water vapor amount. Except sea ice and precipitating areas.
Integrated cloud liquid water	Global, over ocean	15	$\pm 0.10 \text{ kg/m}^2$	$\pm 0.05 \ kg/m^2$	$\pm 0.02 \text{ kg/m}^2$	0-1.0 kg/m ²	Vertically integrated (columnar) cloud liquid water. Except sea ice and precipitating areas.
Precipitation	Global, except cold latitudes	15	Ocean ±50 % Land ±120 %	Ocean ±50% Land ±120 %	Ocean ±20% Land ±80 %	0-20 mm/h	Surface precipitation rate. Accuracy is defined as relative error (ratio of root-mean-square error to average precipitation rate) in 50km grid average.
Sea surface temperature	Global, over ocean	50	±0.8 °C	±0.5 °C	±0.2 °C	-2-35 °C	Except sea ice and precipitating areas. Goal accuracy is defined as monthly mean bias error in 10 degrees latitudes.
Sea surface wind speed	Global, over ocean	15	±1.5 m/s	±1.0 m/s	$\pm 1.0 \text{ m/s}$	0-30 m/s	Except sea ice and precipitating areas.
Sea ice concentration	Polar region, over ocean	15	±10 %	±10 %	±5 %	0-100 %	Accuracy is expressed in absolute value of sea ice concentration (%).
Snow depth	Land	30	±20 cm	±20 cm	$\pm 10 \text{ cm}$	0-100 cm	Except ice sheets and dense forest areas. Accuracy is expressed in snow depth and defined as mean absolute error of instantaneous observations.
Soil moisture	Land	50	±10 %	±10 %	±5 %	0-40 %	Volumetric water content over global land areas including arid and cold regions, except areas covered by vegetation with $2kg/m^2$ water equivalent. Accuracy is defined as mean absolute error of instantaneous observations.

Table 6: Standard Geophysical Products of GCOM-W

1 Accuracy is defined as root-mean-square error of instantaneous values unless otherwise stated. Assumed validation methodologies are not explained here.

Table 7: Research Products of GCOM-W

Products	Area	Resolution (km)	Target accuracy	Range						
All-weather sea surface wind speed	Ocean	60	\pm 7 m/s	0 - 70 m/s						
High-resolution (10-GHz) sea surface temperature	Ocean	30	± 0.8 °C	9 - 35 °C						
Soil moisture and vegetation water content based on the land data assimilation	Africa, 25 Australia		soil moisture: \pm 8% vegetation water: \pm 1 kg/m ²	soil moisture: 0 - 100 % vegetation water: 0 - 2 kg/m ²						
Land surface temperature	Land	15	forest area: \pm 3 °C nondense vegetation: \pm 4 °C	0 - 50 °C						
Vegetation water content	Land	10	$\pm 1 \text{ kg/m}^2$	$0 - 4 \text{ kg/m}^2$						
High resolution sea ice concentration	Ocean in high latitude	5	±1%	0 - 100 %						
Thin ice detection	Okhotsk sea	15	\pm 80 %	N/A						
Sea ice moving vector	Ocean in high latitude	50	2 components: 3 cm/s	0 - 40 cm/s						

Table 8: Geophysical Products of GCOM-C (1/3)

Area	Group	Product	Category	Developer	Day/night	Production unit	Grid size	Release threshold ^{*2}	Standard accuracy ^{*2}	Target accuracy ^{*2}
common	Radiance	TOA radiance (including system geometric correction)	Standard	JAXA	TIR and land 2.2µm: both, Other VNR, SWI: daytime (+special operation)	Scene	VNR,SWI Land/coast: 250m, offshore: 1km, polarimetory:1km TIR Land/coast: 500m, offshore: 1km	Radiometric 5% (absolute) ^{*3} Geometric<1 pixel	VNR,SWI: 5% (absolute), 1% (relative) ^{*3} TIR: 0.5K (@300K) Geometric<0.5 pixel	VNR,SWI: 3% (absolute), 0.5% (relative) ^{*3} TIR: 0.5K (@300K) Geometric<0.3 pixel
	S	Precise geometric correction	Standard	JAXA	Both	Tile, Global (mosaic 1, 8 days, month)	250m	<1pixel	<0.5pixel	<0.25pixel
	Surface reflectance	Atmospheric corrected reflectance (incl. cloud detection)	Standard	JAXA	Daytime	Tile , Global (1, 8 days, month)	250m	0.3 (<=443nm), 0.2 (>443nm) (scene) *7	0.1 (<=443nm), 0.05 (>443nm) (scene) *7	0.05 (<=443nm), 0.025 (>443nm) (scene) ^{*7}
		Vegetation index	Standard	JAXA	Daytime	Tile , Global (1, 8 days, month)	250m	Grass: 25%, forest: 20% (scene)	Grass: 20%, forest: 15% (scene)	Grass: 10%, forest: 10% (scene)
		fAPAR	Standard	JAXA/PI	Dautima	Tile , Global (1, 8	250	Grass: 50%, forest: 50%	Grass: 30%, forest:20%	Grass: 20%, forest: 10%
Land	Vegetation and carbon	Leaf area index	Standard		Daytime	days, month)	230m f	Grass: 50%, forest: 50%	Grass: 30%, forest:30%	Grass: 20%, forest: 20%
	cycle	Above-ground biomass	Standard	PI		Tile, Global (1, 8	1 km	Grass: 50%, forest: 100%	Grass: 30%, forest: 50%	Grass: 10%, forest: 20%
		Vegetation roughness index	Standard		Daytime	days, month)	1km	Grass and forest: 40% (scene)	Grass and forest: 20% (scene)	Grass and forest: 10% (scene)
		Shadow index	Standard	PI	Daytime	Tile , Global (1, 8 days, month)	250m, 1km	Grass and forest: 30% (scene)	Grass and forest: 20% (scene)	Grass and forest: 10% (scene)
	TemperatureSurface temperature		Standard	PI	Both	Tile, Global (1, 8 days, month)	500m	<3.0K (scene)	<2.5K (scene)	<1.5K (scene)
		Land net primary production	Research	PI	Daytime	Global (month, year)	1km	N/A	N/A	30% (yearly)
		Water stress trend	Research	PI	N/A	Tile , Global (1, 8 days, month)	500m	N/A	N/A	10% *13 (error judgment rate)
	Application	Fire detection index	Research	PI	Both*12	Scene or Tile	500m	N/A	N/A	20% *14 (error judgment rate)
		Land cover type	Research	PI/JAXA	Daytime	Global (month, season)	250m	N/A	N/A	30% (error judgment rate)
		Land surface albedo	Research	JAXA/PI	N/A	Tile , Global (1, 8 days, month)	1km	N/A	N/A	10%
		Cloud flag/Classification	Standard		Both	Tile , Global (1, 8 day, month)	1km	10% (with whole- sky camera)	Incl. below cloud amount	Incl. below cloud amount
		Classified cloud fraction	Standard		Daytime	Global (1, 8 day, month)		20% (on solar irradiance) ^{*9}	15% (on solar irradiance) ^{*9}	10% (on solar irradiance) ^{*9}
Atı	Claud	Cloud top temp/height	Standard	PI	Both	Tile , Global (1, 8 day, month)		1K*4	3K/2km (top temp/height) ^{*5}	1.5K/1km (temp/height)*5
nosphe	Cloud	Water cloud OT/effective radius	Standard		Daytime	Tile , Global (1, 8 day, month)	1km (Tile), 0.1deg (global)	10%/30% (Cloud OT/radius) ^{*6}	100% as CLW ^{*7}	50%*7 / 20%*8
re		Ice cloud optical thickness	Standard		Daytime	Tile , Global (1, 8 day, month)		30%*6	70% ^{*8}	20%*8
		Water cloud geometrical thickness	Research	PI	Daytime	Tile , Global (1, 8 day, month)		N/A	N/A	300m
	Aerosol	Aerosol over the ocean	Standard	JAXA/PI	Daytime	Tile , Global (1, 8 day, month)		0.1 (Monthly	0.1(scene τa_670,865)*10	0.05 (scene ta_670,865)

							τa_670,865) ^{*10}		
		Land aerosol by near UV	Standard		Daytime	Tile , Global (1, 8 day, month)	0.15 (Monthly τa_380) ^{*10}	$0.15 (\text{scene } \tau a_380)^{*10}$	0. 1(scene ta_380)
		Aerosol by Polarization	Standard	PI	Daytime	Tile , Global (1, 8 day, month)	0.15 (Monthly τa_670,865) ^{*10}	0.15 (scene τa 670,865) ^{*10}	0.1 (scene ta_670,865)
	Radiation	Long-wave radiation flux	Research	TBD	Daytime	Tile, Global (1, 8 day, month)	N/A	N/A	Downward 10W/m2, upward 15W/m2 (monthly)
	budget	Short-wave radiation flux	Research	JAXA/PI	Daytime	Tile , Global (1, 8 day, month)	N/A	N/A	Downward 13W/m2, upward 10W/m2

Area	Group	Product	Category	Developer	Day/night	Production unit	Grid size	Release threshold ^{*2}	Standard accuracy ^{*2}	Target accuracy *2
		Normalized water-leaving radiance (incl. cloud detection)	Standard	PI	Daytime	Scene, Global (1, 8 days,		60% (443~565nm)	50% (<600nm) 0.5W/m ² /str/um (>600nm)	30% (<600nm) 0.25W/m ² /str/um (>600nm)
	Ocean color	Atmospheric correction parameter	Standard		,	montn)		80% (AOT@865nm)	50% (AOT@865nm)	30% (AOT@865nm)
		Photosynthetically available radiation	Standard	JAXA/ PI	Daytime	Scene, Global (1, 8 days, month)		20% (10km/month)	15% (10km/month)	10% (10km/month)
		Euphotic zone depth	Research	PI	Daytime	Scene, Global (1, 8 days, month)	Coast: 250m Offshore: 1km	N/A	N/A	30%
		Chlorophyll-a concentration	Standard	JAXA			Global: 4-9km	-60 to +150% (offshore)	-60 to +150%	-35 to +50% (offshore), -50 to +100% (coast)
	In water	Total suspended matter concentration	Standard	PI	Daytime	Scene, Global (1, 8 days, month)		-60 to +150% (offshore)	-60 to +150%	-50 to +100%
	In-water	Colored dissolved organic matter	Standard	PI			- - 1	-60 to +150% (offshore)	-60 to +150%	-50 to +100%
Ocean		Inherent optical properties	Research	PI	Daytime	Scene, Global (1, 8 days, month)		N/A	N/A	a (440): RMSE<0.25, bbp (550): RMSE<0.25
_	Temperature	Sea-surface temperature	Standard	JAXA	Both	Scene, Global (1, 8 days, month)	Coast: 500m Others: Same as above	0.8K (daytime)	0.8K (day & night time)	0.6K (day and night time)
	Application	Ocean net primary productivity	Research	PI	Daytime	Scene, Global (1, 8 days, month)	Coast: 500m Others: Same as above	N/A	N/A	70% (monthly)
		Phytoplankton functional type	Research	PI	Daytime	Scene, Global (1, 8 days, month)	Coast: 250m Others: Same as above	N/A	N/A	error judgment rate of large/ small phytoplankton dominance<20%; or error judgment rate of the dominant phytoplankton functional group <40%
		Red tide	Research	PI	Daytime	Scene, Global (1, 8 days, month)		N/A	N/A	error judgment rate <20%
		multi sensor merged ocean color	Research	JAXA/PI	Daytime	Area, Global (1, 8 days, month)	Coast: 250m	N/A	N/A	-35 to +50% (offshore), -50 to +100% (coast)
		multi sensor merged SST	Research	TBD	Both	1	Olishore: Tkili	N/A	N/A	0.8K (day & night time)
		Snow and Ice covered area (incl. cloud detection)	Standard	PI/JAXA	Daytime	Tile, Global (1, 8 days, month)	250m (Tile), 1km (global)	10% (vicarious val with	7%	5%
	Area/	Okhotsk sea-ice distribution	Standard		Daytime	Area (1day)	250m	10% other sat. data)	5%	3%
	distribution	Snow and ice classification	Research	PI/JAXA	Daytime	Global (8 days, month)	1km	N/A	N/A	10%
		Snow covered area in forests and mountains	Research	JAXA	Daytime	Area (1, 8 days)	250m	N/A	N/A	30%
Jryosp		Snow and ice surface Temperature	Standard		Daytime	Tile, Global (1, 8 days, month)	500m (Tile), 1km (global)	5K (vicarious val with other sat. data and climatology)	2K	1K
here	G (Snow grain size of shallow layer	Standard	DI DI	Daytime	Tile, Global (1, 8 days, month)	250m (Tile), 1km (global)	100% (vicarious val. with climatology between temp-size)	50%	30%
	properties	Snow grain size of subsurface layer	Research	PI	Daytime	Tile, Global (1, 8 days, month)	1km	N/A	N/A	50%
		Snow grain size of top layer	Research		Daytime Tile, Global (1, 8 days, month)	250m (Tile), 1km (global)	N/A	N/A	50%	
		Snow and ice albedo	Research	PI	Daytime	Global (1, 8 days, month)	1km	N/A	N/A	7%

Table 8: Geophysical Products of GCOM-C (2/3)

Table 8: Geophysical Products of GCOM-C (3/3)

Area	Group	Product	Category	Developer	Day/night	Production unit	Grid size	Release threshold ^{*2}	Standard accuracy ^{*2}	Target accuracy ^{*2}
Cry	Surface	Snow impurity	Research	PI	Daytime	Tile, Global (1, 8 days, month)	250m (Tile), 1km (global)	N/A	N/A	50%
Iso.	properties	Ice sheet surface roughness	Research	PI	Daytime	Area (Season)	1km	N/A	N/A	0.05 *15
phere	Boundary	Ice sheet boundary monitoring	Research	JAXA	Daytime	Area (Season)	250m	N/A	N/A	<500m

*1. Heritage levels from ADEOS-II/GLI study are shown by A-C; A: high heritage, B: Remaining issues, C: new or many issues remaining to be resolved

*2. The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full and extra success criteria of the mission. Accuracies are basically shown by RMSE.

Radiance data notes:

*3. Absolute error is defined as offset + noise; relative error is defined as relative errors among channels, FOV, and so on. Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Atmosphere notes:

- *4. Vicarious val. on sea-surface temperature and comparison with objective analysis data
- *5. Inter comparison with airplane remote sensing on water clouds of middle optical thickness
- *6. Release threshold is defined by vicarious val. with other satellite data (e.g., global monthly statistics in the mid-low latitudes)
- *7. Comparison with cloud liquid water by in-situ microwave radiometer
- *8. Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)
- *9. Comparison with in-situ observation on monthly 0.1-degree
- *10. Estimated by experience of aerosol products by GLI and POLDER

Land data notes:

- *11. Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25
- *12. Night time 250m product can be produced by special observation requests of 1.6µm channel
- *13. Evaluate in semiarid regions (steppe climate, etc.)
- *14. Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)

Cryosphere notes:

APPENDIX 1-C

SUPPLEMENTAL TABLES FOR THE PRODUCT VALIDATIONS OF THE GLOBAL CHANGE OBSERVATION MISSION-CLIMATE (GCOM-C)

Cate- gory	Product [Definition • Unit]	Accuracy*	16	Cal/Val Method
	Satellite-observed radiance (Level-1B) Def.: Satellite-observaed radiances which are radiometrically and geometrically corrected with	Release (Data release thresh- old)	5% (absolute ^{*11}) geometric accr.<1pixel	Accuracy of radiance is evaluated as RMS error based on vicarious calibration, on-board calibrations with solar diffuser and blackbody and so on. Geometrical accuracy is evaluated using GCP as RMS error of pixel position after systematic geometric correction.
Commo	inter-band registration. Calibration information is added. Unit: W/m²/str/μm	Stan- dard	except TIR: 5%(abs. ^{*11}), 1% (relative) TIR: 0.5K (@300K) geometric accr.<0.5pixel	Accuracy of radiance is evaluated as RMS error based on vicarious calibration, on-board calibrations with solar diffuser and blackbody, and maneuver operations for moon calibration and inter-band
		Goal	Except TIR: 3%(abs. ^{*11}), 0.5% (relative) TIR: 0.5K (@300K) geometric accr.<0.3pixel	calibration (yaw-direction maneuver). Geometrical accuracy is evaluated using GCP as RMS error of pixel position after systematic geometric correction.
	Precise geometric corrected radiance (LTOA) Def.: This product contains 1) PGCP parameters which	Release	<1pixel	Accuracy of precise geometric correction is evaluated as RMS error of pixel position using GCPs.
	indicate geometric biases estimated using GCP, and 2) radiance images which are projected to sinusoidal projection plane with the center longitude of 0 degree after the correction of the geometric biases using the PGCP. Unit: W/m2/str/µm	Stan- dard	<0.5pixel	
		Goal	<0.25pixel	
	Land atmospheric corrected reflectance (LSRF) Def.: Land surface reflectance corrected for the effects of atmospheric scattering and absorption. Correction of directional anisotropic effects are also made for 8 day and	Release	0.3 (<=443nm), 0.2 (>443nm) (scene)* ⁸	RMS error between satellite-derived reflectances and ground truth measurements is estimated at a region where aerosol optical thickness at 500nm is less than 0.25.
		Stan- dard Goal	0.1 (<=443nm), 0.05 (>443nm) (scene)*8 0.05 (<=443nm), 0.025 (>443nm) (scene)*8	RMS error between satellite-derived reflectances and ground truth measurements is estimated.
and	Unit: none	2	(>443nm) (scene) °	
	Vegetation index (VGI) Def.: Indices indicating vegetation cover and activity such as NDVI and EVI Unit: none	Release	Grass land: 25% (scene), Forest: 20% (scene)	RMS error is evaluated comparing SGLI-derived VI with in-situ measured VI derived from spectroradiometer data at JaLTER, JapanFlux, PEN, Yatsuga-take tower site etc. and also with other satellite VI products.
		Stan- dard	Grass land: 20% (scene), Forest: 15% (scene)	RMS error is evaluated comparing SGLI-derived VI with in-situ measured VI derived from spectroradiometer data at JaLTER, JapanFlux, PEN,
		Goal	Grass land: 10% (scene), Forest: 10% (scene)	Yatsuga-take tower site etc.
	Above-ground biomass (AGB) Def.: Dry weight of above- ground vegetation Unit: t/ha	Release	Grass land: 50%, Forest: 100%	RMS error is evaluated comparing SGLI-derived AGBIO with in-situ measured AGBIO at JaLTER, JapanFlux, PEN, Yatsuga-take tower site etc. (derived from direct measurements of dry weight of grass at grass land, indirect estimation with allometry equation as functions of tree diameter at brest height (DBH) and tree height, or 3-D laser scanner measurements at forest), and also with AGBIO derived from other satellites and numerical ecosystem models.
		Stan- dard Goal	Grass land : 30%, Forest : 50% Grass land : 10%	RMS error is evaluated comparing SGLI-derived AGBIO with in-situ measured AGBIO at JaLTER, JapanFlux, PEN, Yatsuga-take tower site etc.
			Forest: 20%	

Table C1 Definition and validation method of GCOM-C L1B and L2 products

	Vegetation roughness index (VRI)	Release	Grass land · Forest : 40%	RMS error is evaluated comparing SGLI-derived VRI with in-situ measured VRI at Jal TER, JapanElux, PEN
	Def.: An index indicating plant	Stan-	Grass land • Forest : 20%	Yatsuga-take tower site etc. (derived from spectoral
	vertical structure observed	dard	(scene)	reflectance data acquired using tower and RC
	from multi-angle directions.	Goal	Grass land • Forest : 10%	helicopter and so on).
	Unit: none		(scene)	
ĺ	Shadow index (SI)	Release	Grass land • Forest :	RMS error is evaluated comparing SGLI-derived VRI
	Def.: An index indicating		30% (scene)	with in-situ measured SI at JaLTER, JapanFlux, PEN,
	shadow fraction of	Stan-	Grass land • Forest :	Yatsuga-take tower site etc. (derived from spectoral
	from spectral reflectance	dard	20% (scene)	heliconter and so on) or comparing with SL inferred
	Unit: none	Goal	Grass land • Forest:	from data of high spatial resolution optical sensor.
			10% (scene)	
	Fraction of absorbed PAR	Release	Grass land: 50%,	RMS error is evaluated comparing SGLI-derived FAPAR
	(FAPAR)		Forest: 50%	PEN Vatsuga-take tower site etc. (derived from data
	photosynthetically active			of PAR meter or spectroradiometer data measuring
	radiation absorbed by			upward and downward PAR at forest canopy and
	vegetation			floor.), and with other satellite FAPAR products.
	Unit: none	Stan-	Grass land : 30%,	RMS error is evaluated comparing SGLI-derived FAPAR
		dard	Forest: 20%	with in-situ measured FAPAR at JaLTER, JapanFlux,
		Goal	Grass land : 20%,	PEN, Yatsuga-take tower site etc. (derived from data
			Forest: 10%	of PAR meter or spectroradiometer data measuring
				floor)
	Leaf area index (LAI)	Release	Grass land 50%	RMS error is evaluated comparing SGII-derived I AI
	Def.: The sum of the one sided		Forest: 50%	with in-situ measured LAI at JaLTER, JapanFlux, PEN,
	green leaf area per unit			Yatsuga-take tower site etc. (derived from data of
	ground area.			litter trap or LAI-2000 and spectroradiometer data
	Unit: none			measuring downward radiant flux etc. at forest floor.),
		<u> </u>		and with other satellite LAI products.
		Stan- dard	Grass land: 30%,	RIVIS error is evaluated comparing SGLI-derived LAI
		Goal	Forest 30%	Yatsuga-take tower site etc. (derived from data of
			Forest 20%	litter trap or LAI-2000 and spectroradiometer data
			101031.2070	measuring downward radiant flux etc. at forest floor.).
	Land surface temperature (LST)	Release	Less than 3.0K (scene)	RMS error is evaluated comparing SGLI-derived LST
	Def.: Temperature of			with in-situ measured LST at the ground surface with
	terrestrical land surface.			uniform land cover and also comparing with other
	Onit. Keivin	Stan- dard	Less than 2 5K (scene)	RMS error is evaluated comparing SGLI-derived LST
		Goal	Loss than 1 EK (seens)	with in-situ measured LST at the ground surface with
	Land not primary production	Release		uniform land cover (TBD).
70	(LNPP)	Release	N/A	
Lan	Def.: Net primary productivity	Stan- dard	N/A	N/A
	which is how much carbon dioxide vegetation takes in	Carl		
	during photosynthesis (GPP)	GOal	30%(annual ave.)	with in-situ measured I NPP at lal TER JapanElux PEN
	minus how much carbon			sites and also comparing with other satellite LNPP
	dioxide the plants release			products.
	during respiration or decay.			
	Unit: gC/m²/year	N 1		
	Water stress trend (WST)	Release	N/A	
	the droughty state of	Stall- ualu	N/A	N/A
	vegetation.	Goal	10% (as classification	Classification error is evaluated comparing SGLI
	Unit: none		error)*13	derived WST with in-situ measured latent heat
	Eiro dotaction index (EDI)	Release	N/A	
	Def.: Location of fire hot spots	Stan- dard	N/A	N/A
	detected using thermal and	Goal	20% (as classification	Classification error is evaluated comparing SGLI
	shortwave infrared bands.		error)*14	derived FDI with that derived from high spatial
	Unit: none			resolution optical sensors which has shortwave and
				thermal infrared bands.
	Land cover type (LCT)	Release	N/A	N/A

	Def.: Land cover type classified	Stan- dard	N/A	N/A
	using vegetation indices and	Goal	30% (as classification	Classification error is evaluated comparing SGLI
	Unit: none		error)	derived LCT with the ground truth derived from
				Degree Confluence Project data on a global scale, and
				derived from high spatial resolution sensors.
	Land surface albedo (LALB)	Release	N/A	N/A
	Def.: Ratio of upward reflected	Stan- dard	N/A	N/A
	energy to downward solar	Goal	10%	RMS error is evaluated comparing SGII-derived IAIB
	radiation energy.		20/0	with in-situ measured LALB derived from
	onit: none			spectroradiometer data at JaLTER, JapanFlux, PEN,
				Yatsuga-take tower site etc. (derived from spectoral
				reflectance data acquired using tower and RC holicoptor and so on) and also with other satellite
				LALB products.
	Cloud flag (CLFG)	Release	10% (comparison with	Overall classification error is evaluated comparing
	Def.: Cloud discrimination flag		sky-camera binary	SGLI derived CLFG with those derived from other
	including the classification of		image)	satellite sensors, cloud amounts collected through
	(liquid/solid)			skycamera images
	Unit: none	Stan- dard	Evaluated as the cloud	Same as the classified cloud fraction.
			fraction products.	
		Goal	Evaluated as the cloud	Same as the classified cloud fraction.
	Classified claud fraction (CLED)	Poloaco	fraction products.	Querell electricities error is evaluated comparing SCIL
	Def.: Cloud fractions for 9 cloud	Nelease	radiation) ^{*6}	derived solar radiation which is monthly average for
	types which are classified	Stan- dard	15%(as solar	every 0.1 degree global grid with in-situ measured solar
	based on the ISCCP		radiation)*6	radiation, skycamera images, and existing cloud
	classification rule.	Goal	10% (as solar	fraction climatology datasets such as ISCCP(the
	Cloud ton tomn (height (CLTTU)	Poloaco	radiation) ^{*6}	The release criterion shown in the left column
	Def.: Temperature and height of	Release	IK	indicates a threshold for SGLI TIR band brightness
e	cloud top layer.			temperature by which the ability to sense cloud top
phei	Unit: Kelvin for temperature,			temperature is evaluated indirectly. The accuracy of
lsou	km for height			TIR band is assessed through the product evaluation
Atn				process of sea surface temperature etc. Also
				temperature with object analysis data of air
				temperature profile over ocean in daytime.
		Stan- dard	3K *² /2km *²	RMS error is evaluated comparing SGLI derived CLTTH
		Goal	1.5K *2 /1km*2	with those derived from airbone and satellite borne
			1.5 K / 1 Km	with moderate optical thickness.
	Water-cloud optical thickness &	Release	10%/30% (optial	RMS error is evaluated comparing SGLI derived
	effective radius (CLOTER_W)		thickess/radius) *3	CLOTER_W with those from other satellite sensors for
	Def.: Optical thickness and			clouds of mid- to low latitude regions (monthly
	effective radius of water	Stan- dard	100% (as cloud liquid	average). RMS error is evaluated comparing cloud liquid water
	Unit: none for thickness, μm for		water ^{*4})	converted from SGLI derived CLOTER W with those
	radius			measured with microwave radiometer on the ground.
		Goal	50% *4 /20% *5	Overall RMS error is evaluated comparing SGLI
				derived CLOTER_W with those derived from
				thickness) and other satellite sensors (both param.).
	Ice-cloud optical thickness	Release	30% ^{*3}	RMS error is evaluated comparing SGLI derived
	(CLOT_I)			CLOT_I with those from other satellite sensors for
	Det.: Optical thickness of ice			clouds of mid- to low latitude regions (monthly
	Unit: none	Stan- dard	70% *5	average).
daa			/ 0 / 0	CLOT_I with those from skyradiometers at ground
		Goal	20 % *5	observation network and other satellite sensors.
	Aerosol over the ocean (ARNP)	Release	0.1(monthly ave. of	Overall RMS error is evaluated comparing SGLI
	Def.: Optical thickness,		τa_670, 865)	derived ARV with those from other satellite sensors
	Angström exponent, and			and climatology based on the past satellite
	classification of defosol over			ouservations (montiny average).

	ocean estimated using visible and near infrared band.	Stan- dard	0.1(scene's τa_670, 865) ^{*7}	RMS error is evaluated comparing SGLI derived ARV with those from other satellite sensors and shipborne
	Unit: none	Goal	0.05(scene's τa_670, 865)	in-situ observations (AERONET/Maritime Aerosol Network).
	Land aerosol by near-UV (ARNP)	Release	0.15(monthly ave.	RMS error is evaluated comparing SGLI derived ARU with those from shuradiometers at ground
	absorption coefficient of aerosol over land estimated	Stan- dard	0.15(scene's τa_380) *7	observation network (Skynet, Aeronet) and other satellite sensors.
	using near-ultraviolet band. Unit: none	Goal	0.1(scene's τa_380)	
	Aerosol by Polarization (ARPL) Def.: Optical thickness,	Release	0.15(monthly ave. of τa_670, 865)	RMS error is evaluated comparing SGLI derived ARP with those from skyradiometers at ground
	Ångström exponent, and classification of aerosol	Stan- dard	0.15(scene's τa_670, 865) ^{*7}	observation network (Skynet, Aeronet) and other satellite sensors for fine mode particles.
	estimated using polarization bands.	Goal	0.1(scene's τa_670, 865)	
	Water cloud geometrical	Release	N/A	N/A
	thickness (CLGT_W)	Stan- dard	N/A	N/A
	Def.: Geometrical thickness of water cloud. Unit: m	Goal	300m	RMS error is evaluated comparing SGLI derived CLGT_W with those measured at the ground and from space (satellite) with cloud radar and lidar instruments.
	Long-wave radiation flux	Release	N/A	N/A
	(LWRF) Def.: Longwave radiation flux at	Stan- dard	N/A	N/A
	the ground including downward longwave radiation flux and upward longwave radiation flux.	Goal	Downward flux: 10W/m ² , Upward flux: 15W/m ² (0.1 deg., monthly ave.)	RMS error is evaluated comparing SGLI derived monthly averaged LWRF with those from ground radiation observation network (ARM, BSRN), ground observation network (JaLTER, JapanFLux, PEN, Fluxnet etc.), and other satellite sensors.
·	Short-wave radiation flux	Release	N/A	N/A
	(SWRF)	Stan- dard	N/A	N/A
	Def.: Shortwave radiation flux at the ground including downward shortwave radiation flux and upward shortwave radiation flux. Unit: W/m ²	Goal	Downward: 13W/m ² , Upward: 10W/m ² (0.1deg. , monthly ave.)	RMS error is evaluated comparing SGLI derived monthly averaged SWRF with those from ground radiation observation network (ARM, BSRN), ground observation network (JaLTER, JapanFLux, PEN, Fluxnet etc.), and other satellite sensors.
	Normalized water leaving radiance (NWLR) Def.: The upwelling radiance just above the sea surface.	Release	60% (443~565nm)	RMS error is evaluated comparing SGLI derived NWLR with in-situ optical measurements conducted during simultaneous ship observations campaign and also comparing with other satellite products.
	Unit: W/m²/str/um or 1/sr	Stan- dard	50% (<600nm) 0.5W/m2/str/um (>600nm)	RMS error is evaluated comparing SGLI derived NWLR with in-situ optical measurements conducted during simultaneous ship observations campaign.
		Goal	30% (<600nm) 0.25W/m2/str/um (>600nm)	
Ocean	Atmospheric correction param.(ACP) Def.: Aerosol optical properties for the atmospheric correction over ocean.	Release	80% (ta_865)	RMS error is evaluated comparing SGLI derived aerosol optical thickness with those from in-situ measurements using radiometers during simultaneous ship observations campaign and also comparing with other satellite sensors.
	Unit: none	Stan- dard	50% (τa_865)	RMS error is evaluated comparing SGLI derived
		Goal	30%	measurements using radiometers during simultaneous ship observations campaign.
	Photosynthetically Available	Release	20% (10km/month)	RMS error is evaluated comparing SGLI derived
	Def.: Photon flux density within the visible wavelength range	Stan- dard	15% (10km/month)	mooring buoy such as NDBC, TAO/TRITON etc. as solar radiation or PAR.
	(400 to 700 nm) over ocean which is potencially available to plant for photosynthesis.	Goal	10% (10km/month)	

	Unit: Ein/m ² /day or mol					
	Chlorophyll-a concentration (CHLA) Def.: Concentration of the green pigment in	Release	-60~+150% (open sea)	RMS error is evaluated comparing SGLI derived CHLA with those derived from sea water samples by fluorescence method or HPLC analysis and also with other satellite products.		
	phytoplankton in sea surface layer. Unit: mg/m ³	Stan- dard	-60~+150%	RMS error is evaluated comparing SGLI derived CHLA with those derived from sea water samples by fluorescence method or HPLC analysis.		
	, , ,	Goal	-35~+50% (open sea), -50~+100% (coastal)			
	Total Suspended Matter concentration (TSM) Def.: Dry weight of suspended matter in a unit volume of	Release	-60~+150% (open sea)	RMS error is evaluated comparing SGLI derived SS with those derived from sea water samples by filtration method and also with other satellite products.		
	surface water which is the sum of organics such as	Stan- dard	-60~+150%	RMS error is evaluated comparing SGLI derived SS with those derived from sea water samples by		
	phytoplankton and inorganics such as soil.	Goal	-50~+100%	filtration method.		
	Unit: g/m ³ Colored dissolved organic matter (CDOM) Def.: Light absoption coefficient	Release	-60~+150% (open sea)	RMS error is evaluated comparing SGLI derived CDOM with those derived from sea water samples by optical measurements and also with other satellite products.		
	of organics dissolved in surface water. Unit: 1/m	Stan- dard	-60~+150%	RMS error is evaluated comparing SGLI derived CDOM with those derived from sea water samples by optical		
	0mt. 1/m	Goal	-50~+100%	measurements.		
	Sea surface temperature (SST) Def.: Temperature of sea surface. Unit: °C	Release	0.8K (daytime only)	Overall RMS error is evaluated comparing SGLI derived SST with those derived from other satellite sensors and also comparing with those from buoy measurements (daytime only) obtained through GTS and internet.		
		Stan- dard	0.8K	Overall RMS error is evaluated comparing SGLI derived SST with those derived from other satellite		
		Goal	0.6К	sensors and also comparing with those from buoy measurements obtained through GTS and internet.		
_	Euphotic zone depth (EZD)	Release	N/A	N/A		
cear	Def.: The sea depth where	Stan- dard	N/A	N/A		
0	radiation (PAR) is 1% of its surface value. Unit: m	Goal	30% (inferred from extinction coefficient)	RMS error is evaluated comparing SGLI derived EZD with those derived from simultaneous measurements of in-water downward irradiance (in-situ EZD is determined from the slope of measured irradiance).		
	Inherent optical properties	Release	N/A	N/A		
	(IOP) Def.: Optical properties of sea	Stan- dard	N/A	N/A		
	water such as spectral absorption, scattering, and backscattering coefficients for characterizing the marine optical environment and remote-sensing applications. Unit: 1/m	Goal	Absorption coefficient @440nm: RMSE<0.25 and backscattering coefficient of phytoplankton@550nm : RMSE<0.25	RMS error is evaluated comparing SGLI derived IOP with those derived from simultaneous optical measurements.		
	Ocean net primary productivity	Release	N/A	N/A		
	(ONPP) Def : Net primary productivity	Stan- dard	N/A	N/A		
	which is gross photosynthetic carbon fixation minus the carbon respired to support maintenance requirements of the whole plant.	Goal	70% (monthly ave.)	RMS error is evaluated comparing SGLI derived monthly averaged ONPP with those derived from simultaneous in-situ measurements.		
	Phytoplankton functional type	Release	N/A	N/A		
	(PHFI)	Stan- dard	N/A	N/A		

	Def.: Conceptual groupings of phytoplankton species, which have a ecological functionality in common such as nitrogen fixation, calcification, silicification, DMS production and so on. Unit: none	Goal	Classification error of dominant/non- dominant spesies of large/small phytoplankton: 20%, or classification error of dominant functional type in a phytoplankton group: 40%	Classification error is evaluated comparing with SGLI derived PHFT with the dominant type of phytoplankton group (such as Bacillariophyceae, Chlorophyceae, and Haptophyta etc.) determined from the plant pigment analysis of sea water samples using HPLC.
	Redtide (RTD)	Release	N/A	N/A
	phenomenon known as an	Stan- dard	N/A	N/A
	algal bloom. Unit: none	Goal	20% (as classification error)	Classification error is evaluated comparing SGLI derived RTD with the occurrence of red tide events determined by eye during simultaneous ship observations campaign.
	Multi sensor merged ocean	Release	N/A	N/A
	color parameters (MOC)	Stan- dard	N/A	N/A
	Def.: Multi-sensor merged chrollophyl-a concentration product with higher temporal resolution than that of SGLI original product. Unit: mg/m ³	Goal	-35~+50% (Open sea), -50~+100% (Coastal)	Same as the SGLI original product (CHLA).
	Multi sensor merged sea	Release	N/A	N/A
	surface temperature (MSST)	Stan- dard	N/A	N/A
	seasurface temperature	Goal	0.8K	Same as the SGLI original product (SST).
	product with higher temporal resolution than that of SGLI original products. Unit: °C			
	Snow and Ice covered area	Release	10% (comparison with	Overall classification error is evaluated comparing
	(SICA)		other satellite products)	SGLI derived SICA with other satellites' same products
	and ice cover.			derived from the past observations.
	Unit: none	Stan- dard	7%	Overall classification error is evaluated comparing SGLI derived SICA with those derived from moderate
		Goal	5%	and high spatial resolution satellite sensors and also with snow and ice information obtained at ground stations etc.
	Okhotsk sea-ice distribution (OKID) Def.: The extent of sea ice in Okhotsk Sea.	Release	10% (comparison with other satellite products)	Overall classification error is evaluated comparing SGLI derived OKID with other satellites' same products and climatology of related geophysical parameters derived from the past observations.
	Unit: none	Stan- dard	5%	Overall classification error is evaluated comparing
		Goal	3%	and high spatial resolution satellite sensors and also with ice information obtained at ship etc.
Cryosp	Snow and ice surface Temperature (SIST) Def.: Temperature of snow and ice surface.	Release	5K (comparison with other satellite products and meteorological measurements)	Overall RMS error is evaluated comparing SGLI derived SIST with those from other satellite sensors, air temperatures from GTS and ice buoys, and climatology derived from the past observations.
	Unit: Kelvin	Stan- dard	2К	RMS error is evaluated comparing SGLI SIST with
		Goal	1К	those from in-situ radiometer measurements and snow pit works, air temperatures from GTS and ice buoys.
	Snow grain size of shallow layer (SNGSL) Def.: Grain size of snow ice particle in shallow layer	Release	100%(evaluated with climatology of temperature-snow grain size relationship)	Overall error is evaluated comparing SGLI derived SNGSL with other satellites' products and climatology derived from the past observations.
	derived mainly from SGLI	Stan- dard	50%	RMS error is evaluated comparing SGLI SNGSL with
	865nm band reflectance.	Goal	20%	those from in-situ radiometer measurements and
	Unit: µm	Juai	50%	snow pit works.
	Snow and ice classification (SIC)	Release	N/A	N/A

	Def.: Classification of snow and	Stan- dard	N/A	N/A
	ice cover types derived using spectral reflectance and temperature. Unit: none	Goal	10%	Classification error is evaluated comparing SGLI derived SIC with those derived from other moderate and high spatial resolution satellite sensors and also with snow and ice information obtained at ground station etc.
-	Snow area in forest and	Release	N/A	N/A
	mountain (SCAFM)	Stan- dard	N/A	N/A
	in forest and mountaneous region. Unit: none	Goal	30%	Classification error is evaluated comparing SGLI derived SCAFM with those derived from other moderate and high spatial resolution satellite sensors and also with snow information obtained at ground station etc.
	Snow grain size of subsurface	Release	N/A	N/A
	layer (SNGSS) Def : Grain size of snow ice	Stan- dard	N/A	N/A
-	particle in sub-surface layer derived mainly from SGLI 1050nm band reflectance. Unit: μm	Goal	50%	RMS error is evaluated comparing SGLI SNGSS with those from in-situ radiometer measurements and snow pit works.
	Snow grain size of top layer	Release	N/A	N/A
	(SNGST) Def : Grain size of snow ice	Stan- dard	N/A	N/A
	particle in top-surface layer derived mainly from SGLI 1640nm band reflectance. Unit: μm	Goal	50%	RMS error is evaluated comparing SGLI SNGST with those from in-situ radiometer measurements and snow pit works.
	Snow and ice albedo (SIALB)	Release	N/A	N/A
	Def.: Spectrally integrated	Stan- dard	N/A	N/A
	Unit: none	Goal	7%	RMS error is evaluated comparing SGLI SIALB with those from in-situ radiometer measurements and snow pit works.
	Snow impurity (SNIP)	Release	N/A	N/A
	Det.: Mass fraction of snow impurity mixed in snow layer	Stan- dard	N/A	N/A
	which is optically equivalent to soot. Unit: ppmw	Goal	50%	RMS error is evaluated comparing SGLI SNIP with those from in-situ radiometer measurements and snow pit works.
	Ice sheet surface roughness	Release	N/A	N/A
	Def.: Surface roughness of ice	Stan- dard	N/A	N/A
	sheets defined as the ratio of height to width of a roughness pattern. Unit: none	Goal	0.05 *15	RMS error is evaluated comparing SGLI derived ISRGH with those derived from other moderate and high spatial resolution satellite sensors and with numerical simulation results.
	Ice sheet boundary monitoring	Release	N/A	N/A
ere	(ISBM) Def.: Boundary line between ice	Stan- dard	N/A	N/A
Cryosph	sheets and sea surface. Unit: none	Goal	500m 以下	Overall bias of ice sheet boundary line is evaluated comparing SGLI derived ISBM with those derived from other moderate and high spatial resolution satellite sensors.

*1. Heritage levels from ADEOS-II/GLI study are shown by A-C; A: high heritage, B: Remaining issues, C: new or many issues remaining to be resolved

*2. The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full and extra success criteria of the mission. Accuracies are basically shown by RMSE.

Radiance data notes:

*3. Absolute error is defined as offset + noise; relative error is defined as relative errors among channels, FOV, and so on. Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Atmosphere notes:

*4. Vicarious val. on sea-surface temperature and comparison with objective analysis data

*5. Inter comparison with airplane remote sensing on water clouds of middle optical thickness

*6. Release threshold is defined by vicarious val. with other satellite data (e.g., global monthly statistics in the mid-low latitudes)

*7. Comparison with cloud liquid water by in-situ microwave radiometer

*8. Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)

*9. Comparison with in-situ observation on monthly 0.1-degree

*10. Estimated by experience of aerosol products by GLI and POLDER

Land data notes:

*11. Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25

*12. Night time 250m product can be produced by special observation requests of 1.6µm channel

*13. Evaluate in semiarid regions (steppe climate, etc.)

*14. Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)

Cryosphere notes:

TABLE C2 Expected reference data for the validation of GCOM-C/SGLI standard products

Catego ry	Product [Unit]	Accuracy Targets	Val. Data Type (Main/Auxiliary)	Algorithm PIs	Validation PIs	In-situ Data	Instruments	Observation Sites	Period, Frquency, Obs. Cycles
	Satellite- observed radiance (Level- 1B) [W/m ² /str/µm]	Release: 5% (Abs. *11) Geometric: <1pixel	In-situ & various cal.data (Main)	AXA	AXA	Ground reflectance data, MOBY data etc. (cooperation with NOAA) Onboard calibration data Other satellite data (TBD)	Spectrometer SGLI MODIS(MOD02,MYD02) CAI(L1,L1B) ASTER(L1B)	CEOS cal sites Global	Year-round Year-round
Common		Standard: VIS- SWIR: 5% (Abs.*11), 1% (Relative) TIR: 0.5K (@300K) Geometric: <0.5pixel Goal: VIS-SWIR : 3% (Abs.*11), 0.5% (Relative) TIR: 0.5K (@300K) Geometric: <0.3pixel	In-situ & various cal.data (Main)			Ground reflectance data, MOBY data etc. (cooperation with NOAA) Onboard calibration data Other satellite data (TBD)	Spectrometer SGLI MODIS(MOD02,MYD02) CAI(L1,L1B) ASTER(L1B)	CEOS cal sites Global	Year-round Year-round
	Precise geometric corrected radiance	Release: <1pixel	Other satellites (Main)	JAXA (RESTEC, Tokai U.)	JAXA	GCP database derived from AVNIR-2 etc.	MODIS (MCD43C4) CAI AVNIR-2	(Defined in GCP library)	Year-round
5	[W/m2/str/µm]	Standard: <0.5pixel	Other satellites (Main)			GCP database derived from AVNIR-2 etc.	MODIS (MCD43C4)		
hur		Goal: <0.25pixel					CAI		

Land atmospheric corrected reflectance [—]	Release : 0.3 (<=443nm), 0.2 (>443nm) (scene)(*8)	In-situ (Main)	JAXA	Honda- Kajiwara	Spectral reflectance (incl. BRDF) data measured from UAV	FieldSpec, MS-720 Hyperspectral Camera	Yatsugatake	Campaign
				Nasahara	Spectral data measured from Tower Spectral data measured from UAV (combined with BiRS simulations for uniform surfaces)	MS-700 MS-720	JaLTER, JapanFlux, PEN sites	Year-round
		Other satellites (Auxiliary)		JAXA	L2 atmospheric corrected reflectance product (MOD09, MYD09)	MODIS of Terra & Aqua	Global but every typical LCC (TBD)	Year-round or Seasonally
	Standard: 0.1 (<=443nm), 0.05 (>443nm) (scene)(*8)	ln-situ (Main)		Honda- Kajiwara	Spectral data measured from UAV	FieldSpec, MS-720 Hyperspectral Camera	Yatsugatake	Campaign
	Goal: 0.05 (<=443nm), 0.025 (>443nm) (scene)(*8)			Nasahara	Spectral data measured from Tower Spectral data measured from UAV	MS-700 MS-720	JaLTER, JapanFlux, PEN sites	Year-round
Vegetation index [—]	Release: grass: 25% (scene),	In-situ (Main)	JAXA	Honda- Kajiwara	Spectral data measured from UAV	FieldSpec, MS-720 Hyperspectral Camera	forest:Yatsugatake	Campaign
	forest: 20% (scene)			Nasahara	Spectral data measured from Tower Spectral data measured from UAV	MS-700 MS-720	grass•forest: JaLTER, JapanFlux, PEN sites	Year-round
		Other satellites (Main)		JAXA	L2 VI products (MOD13,MYD13)	MODIS of Terra & Aqua JASMES CAI	Global	Year-round

	Standard: grass: 20% (scene), forest: 15% (scene) Goal: grass: 10% (scene), forest: 10% (scene)	In-situ (Main)		Honda- Kajiwara Nasahara	Spectral data measured from UAV Spectral data measured from Tower Spectral data measured from UAV	FieldSpec, MS-720 Hyperspectral Camera MS-700 MS-720	forest : Yatsugatake grass, forest : JaLTER, JapanFlux, PEN sites	Campaign Year-round
Above-ground biomass [t/ha]	Release: grass: 50%, forest: 100%	In-situ (Main)	Kajiwara	Honda- Kajiwara- Nasahara Honda- Kajiwara- JAXA	AGBIO estimated from Every Tree Measurements (DBH, Tree Hight, Tree Density etc.) AGBIO estimated from 3D- Laser Scanner data measured at ground	Tree (direct) measurements 3D-Laser Scanner	forest: Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites Mine site (GOSAT2) of Australia v Fuji- hokuroku, Tomakomai, Uryuu, Mase, Alaska (boreal, 200m sq scale), Pasoh/ Malaysia (Tropical- rain) forest: Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites	Campaign Campaign
		Other satellites (Main)		Honda- Kajiwara	L2-L3 AGBIO products derived from satellite borne lider and SAR	PALSAR-2, ISS/MOLI (L+5yr), ISS/GEDI (L+5yr)		Year-round
		model (Main)		Sasai	Output of eco-system model	BEAMS (Sasai)	Global but every typical LCC (TBD)	Year-round

	Chanalarst	In alter		Hands	ACDIO active at a l furrer		formet Mark	Compaign
Vegetation	Standard: grass: 30%, forest: 50% Goal: grass: 10%, forest: 20%	In-situ (Main)	Kaijwara	Honda- Kajiwara- Nasahara Honda- Kajiwara- JAXA	AGBIO estimated from Every Tree Measurements (DBH, Tree Hight, Tree Density) AGBIO estimated from 3D- Laser Scanner data measured at grou	Tree (direct) measurements 3D-Laser Scanner	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites Mine site (GOSAT2) of Australia、Fuji- hokuroku, Tomakomai, Uryuu, Mase, Alaska (boreal, 200m sq scale), Pasoh/ Malaysia (Tropical- rain) forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites	Campaign Campaign
roughness index [—]	forest: 40% (scene)	(Main)	Kajiwara	Honda- Kajiwara	Scanner data measured from UAV or near surface (Tower)	3D-Laser Scanner	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites	Campaign
	Standard: grass• forest: 20% (scene) Goal: grass• forest: 10% (scene)	In-situ (Main)		Honda- Kajiwara	VRI derived from 3D-Laser Scanner data measured from UAV or near surface (Tower)	3D-Laser Scanner	forest : Yatsugatake, grass•forest : JaLTER, JapanFlux, PEN sites	Campaign
Shadow index [—]	Release: grass forest: 30% (scene)	In-situ (Main)	Moriyama	Honda- Kajiwara Nasahara	Spectral reflectance from UAV 3D-Laser Scanner data & images from UAV	FieldSpec, MS-720 3D-Laser Scanner Digital camera etc. MS-700	forest : Yatsugatake, Goto grass • forest : JaLTER, JapanFlux, PEN sites	Campaign Campaign
					Spectral reflectance from Tower Spectral data measured from UAV	MS-700 MS-720	forest:Yatsugatake, Goto grass•forest: JaLTER, JapanFlux, PEN sites	
		Other satellites (Auxiliary)		Moriyama	L1 radiance of high-rsol. satellite imagers	Landsat8	grass: forest:Goto Is.	Year-round

	Standard: grass•forest: 20% (scene) Goal: grass•forest: 10% (scene)	In-situ (Main)		Honda- Kajiwara Nasahara	Spectral reflectance from UAV 3D-Laser Scanner data & images from UAV Spectral reflectance from Tower	FieldSpec, MS-720 3D-Laser Scanner Digital camera etc. MS-700 MS-720	forest : Yatsugatake, Goto grass • forest : JaLTER, JapanFlux, PEN sites forest : Yatsugatake, Goto	Campaign Campaign
					Spectral data measured from UAV		grass•forest: JaLTER, JapanFlux, PEN sites	
		Other satellites (Auxiliary)		Moriyama	L1 radiance of high-rsol. satellite imagers	Landsat8	grass: forest:Goto Is.	Year-round
Fraction of absorbed photosynthetic ally active radiation (fPAR) [—]	Release: grass: 50%, forest: 50%	In-situ (Main)	Honda- Kajiwara (JAXA Kobayashi)	Honda- Kajiwara- Nasahara	PAR derived with PAR meter or spectrometer (incident, reflercted, transmitted PAR) measured from Towers Combine canopy model. <= Ground LIDER+ Heli DSM	PAR meters MS700 Spectrometer 3D-Laser Scanner Digital camera etc.	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites, Australia, Fuji-hokuroku, Tomakomai, Uryuu, Mase 500m square sites	Year-round
		Other satellites (Main)		JAXA	L2 FPAR products (MOD15, MYD15)	MODIS of Terra & Aqua	Global	Year-round
	Standard: grass:30%, forest:20% Goal: grass:20%, forest:10%	In-situ (Main)		Honda- Kajiwara- Nasahara	PAR derived with PAR meter or spectrometer (incident, reflercted, transmitted PAR) measured from Towers Combine canopy model. <=	PAR meters MS700 Spectrometer 3D-Laser Scanner	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites Australia, Fuji- hokuroku, Tomakomai, Uryuu,	Year-round
					Ground LIDER+ Heli DSM	Digital camera etc.	Mase 500m square sites	

Leaf area index [—]	Release: grass: 50%, forest: 50%	In-situ (Main)	Honda- Kajiwara (JAXA Kobayashi)	Honda- Kajiwara- Nasahara	In-situ measured LAI (from instrument (indirect) or grass cutting (direct) method)	LAI-2000 Litter trap etc.	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites Australia, Fuji- hokuroku, Tomakomai, Uryuu, Mase Alaska (boreal, 200m sq scale), Pasoh/ Malaysia (Tropical- rain) (500m square sites)	Campaign
		Other satellites (Main)		JAXA	L2 LAI products (MODIS)	MODIS of Terra & Aqua	Global but every typical LCC (TBD)	Year-round
	Standard: grass:30%, forest:30% Goal: grass:20%, forest:20%	In-situ (Main)		Honda- Kajiwara- Nasahara	In-situ measured LAI (from instrument (indirect) or grass cutting (direct) method)	LAI-2000 Litter trap etc.	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites Australia, Fuji- hokuroku, Tomakomai, Uryuu, Mase Alaska (boreal, 200m sq scale), Pasoh/ Malaysia (Tropical- rain) (500m square sites)	Campaign
Land surface temperature [K]	Release: 3.0K 以下 (scene)	In-situ (Main)	Moriyama	Moriyama Honda-	in situ BT measured from ground In-situ BT measured from	IR thermometer	Railroad Valley, ND & Ivanpah playa, CA Yatsugatake	Campaign Campaign
				Kajiwara	UAV	IB thermometer		Voor round
				JAXA	LST converted from Tair	Thermometer	Fluxnet, GTS sites	Year-round
					obtained at Fluxsite, GTS, GSOD or other sites			

			Other satellites (Main)		JAXA	L2 LST products (MOD11, MYD11) L2 LST products from Sentinel-3	MODIS of Terra & Aqua Sentinel-3	Global but every typical LCC (TBD)	Year-round
		Standard: 2.5K 以下 (scene)	In-situ (Main)		Moriyama	in situ BT measured from ground	IR thermometer	Railroad Valley, ND & Ivanpah playa, CA Yatsugatake	Campaign
		Goal: 1.5K 以下 (scene)			Honda- Kajiwara	In-situ BT measured from UAV	IR thermometer	Tatsugatake	Campaign
					Nasahara	In-situ BT measured from Tower	IR thermometer	JaLTER, JapanFlux, PEN sites GTS sites	Year-round
					JAXA	Tair obtained from Fluxsite, GTS, GSOD or other sites	Thermometer		Year-round
	Cloud flag [—]	Release: 10% (comparisonwit h sky-camera binary image)	In-situ (Main)	Nakajima (main), Ishimoto, Riedi	Irie Nakajima Kuji	Cloud amount derived from skycamera GTS cloudiness	Sky-Camera Human-eye	Kumamoto, Greenland, Abashiri, Tsukuba, Shirase, Noto, Yoyogi, Iriomote, Osaka, Polar region (Sbalvard, Syowa St.)	Year-round
			Other satellites (Main)			L2 cloud flag product (MOD35, MYD35)	MODIS VIIRS etc.	Global	Year-round
Atmosphere		Standard&Goal: Eavaluated as the cloud fraction products	In-situ (Main)			same as CLFR	same as CLFR		
	Classified cloud fraction [%]	Release: 20% (as solar radiation)(*6)	In-situ (Main)	Nakajima (main), Ishimoto, Riedi	Hayasaka	BSRN solar radiation data Whole sky image data	Solar radiation base Sky-Camera (supplemental)	BRSR etc. Kumamoto, Greenland, Abashiri, Tsukuba, Shirase, Noto, Yoyogi, Iriomote, Osaka, Polar region (Sbalvard, Syowa St.)	Year-round Year-round

		Climatology (Main)			ISCCP climatological dataset	Various satellites	Global	Year-round
	Standard: 15%(as solar radiation)(*6) Goal: 10%(as solar radiation)(*6)	In-situ (Main)			BSRN solar radiation data Whole sky image data	Solar radiation base Sky-Camera (supplemental)	BRSR etc. Kumamoto, Greenland, Abashiri, Tsukuba, Shirase, Noto, Yoyogi, Iriomote, Osaka, Polar region (Sbalvard, Syowa St.)	Year-round Year-round
Cloud top temp & height [K], [km]	Release: 1K(*1)	Climatology (Main)	Nakajima (main), Ishimoto,	JAXA	ISCCP climatological dataset	Various satellites	Global	Year-round
	Standard: 3K(*2)/2km(*2) Goal: 1.5K(*2)/1km(* 2)	In-situ (Main)	Riedi	Irie (Takano)	Data measured with ground-based radar Data measured with airborne lidar	FALCON(radar) NASA Airborne lidar	Chiba, etc., Nieolson (Contact to Shiobara-san (Irie)) Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.)	Year-round Campaigns
		Other satellites (Main)		JAXA	Data measured with satellite-borne lidar	Satellite borne lidar	Global	Year-round
Water-cloud optical thickness & effective radius [], [µm]	Release: 10%/30% (optial thickess/radius) (*3)	Other satellites (Main)	Nakajima (main), Ishimoto, Riedi	Irie	L2 Cloud effective radius prd. (MOD06, MYD06)	MODIS of Terra & Aqua	Mid- to Low latitude area	Year-round
	Standard: 100% (as cloud liquid water: *4)	In-situ (Main)			Cloud liquid water data from Ground based passive microwave radiometer (PMR)	Microwave radiometer	Fukue, Hedo, Chiba (Skynet supersites) PMR by NICT@ Okinawa (TBD)	Year-round

	Goal: 50% (*4) /20% (*5)	In-situ (Main)			Cloud liquid water data from ground based passive microwave radiometer (PMR) Cloud optical thickness data from skyradiometer	Microwave radiometer Skyradiometer	Fukue, Hedo, Chiba (Skynet supersites) Thai, Gouhi, Chiba, Fukue, Hedo	Year-round Year-round
		Other satellites (Main)			L2 Cloud effective radius prd. (MOD06, MYD06)	MODIS of Terra & Aqua	Global	Year-round
Ice-cloud optical thickness	Release: 30%(*3)	Other satellites (Main)	Nakajima (main), Ishimoto	Irie	L2 Cloud optical thickness prd. (MOD06, MYD06)	MODIS of Terra & Aqua	Mid- to Low latitude area	Year-round
[—]	Standard: 70%(*5) Goal: 20 %(*5)	In-situ (Main)	Riedi		SKYNET data	Skyradiometer	Thai, Gouhi, Chiba, Fukue, Hedo (Skynet super sites)	Year-round
		Other satellites (Main)			L2 Cloud optical thickness prd. (MOD06, MYD06)	MODIS of Terra & Aqua	Global	Year-round
Aerosol over the ocean [—]	Release: 0.1(monthly ave. of ta_670, 865)	In-situ (Auxiliary)	Inoue (main), Ishimoto, Riedi	Aoki, K., Kobayashi, <i>NASA</i> Sano	Skyradiometer data on Mirai, Shirase etc. Microtops data from Maritime Aerosol Network	Skyradiometer Microtops	Cruise route of Mirai, Shirase etc. Various sites	Campaign Campaign
				(Shinozuka)	Airborne Sunphoto data by NASA Ames	Airbone Sunphoto	Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.)	Campaigns
		Other satellites (Main)		JAXA	L2 Aersosol products (MOD04, MYD04)	MODIS of Terra & Aqua CAI VIIRS	Global	Year-round
	Standard: 0.1(scene's τa_670, 865)(*7) Goal:	In-situ (Main)		Aoki, K., Kobayashi, NASA	Skyradiometer data on Mirai, Shirase etc. Microtops data from	Skyradiometer Microtops	Cruise route of Mirai, Shirase etc. Various sites	Campaign Campaign
	0.05(scene's τa_670, 865)			Sano (Shinozuka)	Maritime Aerosol Network Airborne Sunphoto data by NASA Ames	Airbone Sunphoto	Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.)	Campaigns

		Other satellites (Main)		(AXA)	L2 Aersosol products (MOD04, MYD04)	MODIS of Terra & Aqua CAI VIIRS	Global	Year-round
Land aerosol by near-UV [—]	Release: 0.15(monthly ave. of τa_380)	In-situ (Main)	Inoue (main), Ishimoto, Riedi	Aoki K. Sano Yamazaki Various PI/CI Sano (Shinozuka)	SKYNET (Aoki), AERONET (Sano), Skyradiometer (Yamazaki, etc.) Microtops data Airborne Sunphoto data by NASA Ames	Skyradiometer Aeronet Skyradiometer Microtops Airbone Sunphoto	Many Skynet sites (<100) Many Aeronet sites (<100) MRI sites Various sites Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.)	Year-round Year-round Year-round Campaigns Campaigns
		Other satellites (Main)		JAXA	L2 Aersosol products (MOD04, MYD04)	MODIS of Terra & Aqua CAI VIIRS	Global	Year-round
	Standard: 0.15(scene's τa_380) (*7) Goal: 0.1(scene's τa_380)	In-situ (Main)		Aoki K. Sano Yamazaki Various PI/CI Sano (Shinozuka)	SKYNET (Aoki), AERONET (Sano), Skyradiometer (Yamazaki, etc.) Microtops data Airborne Sunphoto data by NASA Ames	Skyradiometer Aeronet Skyradiometer Microtops Airbone Sunphoto	Many Skynet sites (<100) Many Aeronet sites (<100) MRI sites Various sites Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.)	Year-round Year-round Year-round Campaigns Campaigns
		Other satellites (Main)		JAXA	L2 Aersosol products (MOD04, MYD04)	MODIS of Terra & Aqua CAI VIIRS	Global	Year-round
Aerosol by Polarization [—]	Release: 0.15(monthly ave. of τa_670, 865)	In-situ (Main)	Sano (main), Riedi	Aoki K. Sano Yamazaki Various PI/CI Sano (Shinozuka)	SKYNET (Aoki), AERONET (Sano), Skyradiometer (Yamazaki, etc.) Microtops data Airborne Sunphoto data by NASA Ames	Skyradiometer Aeronet Skyradiometer Microtops <i>Airbone Sunphoto</i>	Many Skynet sites (<100) Many Aeronet sites (<100) MRI sites Various sites Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.)	Year-round Year-round Year-round Campaigns Campaigns
		Other satellites (Main)		JAXA	L2 aersosol products (MOD04, MYD04)	MODIS of Terra & Aqua CAI VIIRS	Global	Year-round

		Standard: 0.15(scene's τa_670, 865)(*7) Goal: 0.1(scene's τa_670, 865)	In-situ (Main) Other satellites (Main)		Aoki K. Sano Yamazaki Various PI/CI Sano (Shinozuka) JAXA	SKYNET (Aoki), AERONET (Sano), Skyradiometer (Yamazaki, etc.) Microtops data <i>Airborne Sunphoto data by</i> <i>NASA Ames</i> L2 aersosol products (MOD04, MYD04)	Skyradiometer Aeronet Skyradiometer Microtops <i>Airbone Sunphoto</i> MODIS of Terra & Aqua CAI VIIRS	Many Skynet sites (<100) Many Aeronet sites (<100) MRI sites Various sites Flight courses (TBD, Shinozuka-san (Cl of Sano PI) has info.) Global	Year-round Year-round Campaigns Campaigns Year-round
	Normalized water leaving radiance [W/m2/str/µm or 1/sr]	Release: 60% (443~565nm)	In-situ (Main)	Toratani	Hirawake, Ishizaka, Suzuki, Kobayashi, Hirata, <i>Saikaiku,</i> <i>Tohoku,</i> <i>SEABASS</i>	In-situ measured optical data	PRR (Hirawake, etc.) TRIOS (Ishizaka, etc.) C-OPS (Suzuki)	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi- bay, Toyama-Bay	Campaign
			Other satellites (Main)		JAXA	MOD18	AQUA/MODIS, NPP/VIIRS	Global	Year-round
Ocean		Standard: 50% (<600nm) 0.5W/m2/str/u m (>600nm) Goal: 30% (<600nm) 0.25W/m2/str/u m (>600nm)	ln-situ (Main)		Hirawake, Ishizaka, Suzuki, Kobayashi, Hirata, Saikaiku, Tohoku, SEABASS	In-situ measured optical data	PRR (Hirawake, etc.) TRIOS (Ishizaka, etc.) C-OPS (Suzuki) Aeronet-OC	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi- bay, Toyama-Bay	Campaign
	Atmospheric correction param.	Release: 80% (τa_865)	In-situ (Main)	Toratani, Frouin	Kobayashi Toratani NASA	Aerosol optical thickness data Aerosol optical thickness	Skyradiometer AERONET/maritime(NASA)	Cruise track of Shirase etc. Many Aeronet sites	Campaign
	[—]		Other satellites (Main)		JAXA	data Aerosol optical thickness data	AQUA/MODIS、 NPP/VIIRS	(<100) Global	Year-round

	Standard: 50% (τa_865) Goal: 30%	ln-situ (Main)		Kobayashi, Toratani, etc. NASA, Cooperati on with Atmos. Gr.	Aerosol optical thickness data	Skyradiometer AERONET/maritime(NASA), SKYNET	Cruise track of Shirase etc. Many Aeronet sites (<100)	Campaign
Photosynthetic ally Available Radiation [Ein/m ² /day or mol photons/m ² /da vl	Release: 20% (10km/month)	ln-situ (Main)	JAXA & Frouin	Hirawake, Ishizaka, Suzuki, Hirata, Saikaiku, Tohoku, SFABASS	Buoy: NDBC, TAO/TRITON etc. Ship: PRR data	PRR	Buoy sites ECS, A-line, O-line, Funka-bay, Tokyo- bay, Coast of Oita, Chukchi Sea, Bering Sea, North Pacific	Year-round Campaign
	Standard: 15% (10km/month) Goal: 10% (10km/month)	In-situ (Main)			Buoy: NDBC, TAO/TRITON etc. Ship: PRR data	PRR	Buoy sites ECS, A-line, O-line, Funka-bay, Tokyo- bay, Coast of Oita, Chukchi Sea, Bering Sea, North Pacific	Year-round Campaign
Chlorophyll-a concentration [mg/m ³]	Release: - 60~+150% (open sea)	In-situ (Main)	JAXA, Toratani, Hirata	Hirawake, Ishizaka, Suzuki, Kobayashi, Saikaiku, Tohoku, SEABASS	Pigment concentration data measured with fluorescense method and HPLC at Ship	Fluorescense method, HPLC	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi- bay, Toyama-Bay	Campaign
		Other satellites (Main)		JAXA	MOD20, MOD21	AQUA/MODIS、 NPP/VIIRS	Global	Year-round
	Standard: - 60~+150% Goal: -35~+50% (open sea), -50~+100% (coastal)	In-situ (Main)		Hirawake, Ishizaka, Suzuki, Kobayashi, Saikaiku, Tohoku, SEABASS	Pigment concentration data measured with fluorescense method and HPLC at Ship	Fluorescense method, HPLC	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi- bay, Toyama-Bay	Campaign

Total suspended matter concentration	Release: - 60~+150% (open sea)	In-situ (Main)	JAXA, Toratani, Hirata	lshizaka, Kobayashi, SeaBASS	Dry weight of filtered SS sampled at Ship	Sampling and filtering	ECS, Tokyo-bay	Campaign
[g/m ³]		Other satellites (Main)		JAXA	MOD23	AQUA/MODIS、 NPP/VIIRS	Global	Year-round
	Standard: - 60~+150% Goal: - 50~+100%	In-situ (Main)		Ishizaka, Kobayashi, SeaBASS	Dry weight of filtered SS sampled at Ship	Sampling and filtering	ECS, Ariake, Tokyo- bay	Campaign
Colored dissolved organic matter [m ⁻¹]	Release: - 60~+150% (open sea)	In-situ (Main)	JAXA, Toratani, Hirata	Hirawake, Ishizaka, Kobayashi, <i>Saikaiku, SeaBASS</i>	Ship: Absorption data of sampling water	Absorption meter	ECS, Ariake, Tokyo- bay, Ise-bay, Chukchi Sea, Bering Sea, Akkeshi-bay	Campaign
		Other satellites (Main)		JAXA	MOD24	AQUA/MODIS	Global	Year-round
	Standard: - 60~+150% Goal: - 50~+100%	In-situ (Main)		Hirawake, Ishizaka, Kobayashi, <i>Saikaiku,</i> <i>SeaBASS</i>	Ship: Absorption data of sampling water	Absorption meter	ECS, Tokyo-bay, Ise- bay, Chukchi Sea, Bering Sea, Akkeshi- bay	Campaign
Sea surface temperature [°C]	Release: 0.8K (daytime only)	In-situ (Main)	JAXA	JAXA	GTS iQuam (buoy data for AMSR2 val)		GTS sites	Year-round
				Hirawake, Ishizaka, Kobayashi, Saikaiku, Tohoku, SEABASS	In-situ measured SST Bucket SST, Nautical SST, Argo float SST, etc.	Bucket, thermometer	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi- bay, Toyama-Bay	Campaign
		Other satellites (Main)]	JAXA	MOD28 SST of AMSR2	MODIS AMSR2	Global	Year-round

		Standard: 0.8K Goal: 0.6K	In-situ (Main)		JAXA	GTS iQuam (buoy data for AMSR2 val)	thermometer onboard buoy	GTS sites	Year-round
					Hirawake, Ishizaka, Kobayashi, <i>Saikaiku,</i> Tohoku, SEABASS	In-situ measured SST Bucket SST, Nautical SST, Argo float SST, etc.	Bucket, thermometer	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi- bay, Toyama-Bay	Campaign
			Other satellites (Main)		JAXA	MOD28 SST of AMSR2	MODIS AMSR2	Global	Year-round
	Snow and Ice covered area [—]	Release: 10% (comparison with other satellites	ln-situ (Auxiliary)	Stamnes	JAXA	In-situ snow depth from WMO(GSOD), In-situ snow depth from NOAA(GHCND)	supersonic or laser supersonic or laser	GTS sites GTS sites	Year-round
		products)	Other satellites Climatology (Main)		JAXA	L2 snow cover prd. (MOD10、MYD10) L2 snow cover product L1 radiance	MODIS VIIRS Landsat8 etc.	Global	Year-round
Cryos		Standard : 7% Goal : 5%	ln-situ (Auxiliary)		JAXA	In-situ snow depth from WMO(GSOD), In-situ snow depth from NOAA(GHCND)	supersonic or laser supersonic or laser	GTS sites GTS sites	Year-round
phere			Other satellites Climatology (Main)		JAXA	L2 snow cover prd. (MOD10、MYD10) L2 snow cover product L1 radiance	MODIS VIIRS Landsat8 etc.	Global	Year-round
	Okhotsk sea-ice distribution [—]	Release: 10% (comparison with other satellite products)	Other satellites (Main)	Stamnes	JAXA	L2 sea-ice cover product (MOD10、MYD10) L2 sea-ice cover product L1 radiance	MODIS VIIRS Landsat8 etc.	Sea of Okhotsk	DecMay
		Standard : 5% Goal : 3%	In-situ (Auxiliary)		JAXA	Sea ice conc. measured from ground, airplane etc.	Human-eye, Camera	Sea of Okhotsk	DecMay

		Other satellites Climatology (Main)		JAXA	L2 sea-ice cover product (MOD10, MYD10) L2 sea-ice cover product L1 radiance	MODIS VIIRS Landsat8 etc.	Sea of Okhotsk	DecMay
Snow and ice surface Temperature [K]	Release: 5K (comparison with other satellite	ln-situ (Main)	Stamnes	Aoki	In-situ Tair obtained from GTS, GSOD, GC-Net etc.	Thermometer at GTS and GC-Net sites or ocean bouys	GTS sites etc. GC-Net sites on Greenland	Year-round
products an meteorolog measureme	products and meteorological measurements)	Other satellites (Main)		JAXA	GLI snow surface temp. (Climatology) MODIS snow surf. temp. (Climatology) VIIRS snow surface temp.	GLI MODIS VIIRS Landsat8 etc.	Global, Greenland, Antarctica etc.	Year-round
		Climatology (Main)			Landsat8 snow surface temp. (High resol.) Climatology of Tair etc.	Thermometer at GTS sites or ocean bouys	GTS sites etc.	Year-round
	Standard : 2K Goal : 1K	In-situ (Main)		Aoki	In-situ Tair obtained from GTS, GSOD, GC-Net etc. In-situ Tsnow and Tair data	Thermometer at GTS and GC-Net sites or ocean bouys IR thermoeter, FT-IR, Thermometer etc.	GTS sites etc. GC-Net sites on Greenland Hokkaido, Greenland, Antarctica etc.	Year-round Campaign
Snow grain size of shallow layer [μm]	Release: 100% (evaluated with climatology of temperature- snow grain size relationship)	Other satellites Climatology (Main)	Stamnes	JAXA	GLI snow grain size (Climatology) MODIS snow grain size (Climatology) VIIRS snow grain size Landsat8 snow grain size (High resol.) SGLI SIST product	GLI MODIS VIIRS Landsat8 etc. SGLI	Global, Greenland, Antarctica etc.	Year-round
					In-situ Tair obtained from GTS etc	Thermometer at GTS	GTS sites etc.	
	Standard : 50% Goal : 30%	In-situ (Main)		Aoki	Snow grain size derived from in-situ snow pit data and optical measurements (reflectance, SSA etc.)	Snow Pit Work Tools, FieldSpecFR, NIR Camera, IceCube etc.	Hokkaido, Greenland, Antarctica etc.	Campaign

	Other satellites Climatology (Auxiliary)	JAXA	GLI snow grain size (Climatology) MODIS snow grain size (Climatology)	GLI MODIS VIIRS	Global, Greenland, Antarctica etc.	Year-round
			(Climatology) VIIRS snow grain size Landsat8 snow grain size (High resol.)	Lanosata /a.C		

*1. Heritage levels from ADEOS-II/GLI study are shown by A-C; A: high heritage, B: Remaining issues, C: new or many issues remaining to be resolved

*2. The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full and extra success criteria of the mission. Accuracies are basically shown by RMSE.

Radiance data notes:

*3. Absolute error is defined as offset + noise; relative error is defined as relative errors among channels, FOV, and so on. Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Atmosphere notes:

- *4. Vicarious val. on sea-surface temperature and comparison with objective analysis data
- *5. Inter comparison with airplane remote sensing on water clouds of middle optical thickness
- *6. Release threshold is defined by vicarious val. with other satellite data (e.g., global monthly statistics in the mid-low latitudes)
- *7. Comparison with cloud liquid water by in-situ microwave radiometer
- *8. Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)
- *9. Comparison with in-situ observation on monthly 0.1-degree
- *10. Estimated by experience of aerosol products by GLI and POLDER

Land data notes:

- *11. Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25
- *12. Night time 250m product can be produced by special observation requests of 1.6µm channel
- *13. Evaluate in semiarid regions (steppe climate, etc.)
- *14. Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)

Cryosphere notes:

Categor y	Product [Unit]	Accuracy Targets	Val. Data Type (Main/Auxiliary)	Algorithm PIs	Validation PIs	In-situ Data	Instruments	Observation Sites	Period, Frquency, Obs. Cycles
	Land net primary production [gC/m2/year]	Goal: 30% (annual ave.)	ln-situ (Main)	Nasahara	Nasahara	LNPP data derived from various variables measured at flux tower sites	Thermometer, spectrometer, pyranometer etc.	forest : Yatsugatake, grass•forest : JaLTER, JapanFlux, PEN sites	Year-round
			Other satellites (Main)			LNPP products derived from other satellites	MODIS VIIRS etc.	Global covering every typical LCT	Year-round
	Water stress trend [—]	Goal: 10% (as classification error)(*13)	In-situ (Main)	Kajiwara	Nasahara	Latent heat flux measured at flux tower sites	Eddy Correlation Flux Measurement System	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites	Campaign /Year-round
	Fire detection index [—]	Goal: 20% (as classification error)(*14)	Other satellites (Main)	Moriyama Nakau	Moriyama Nakau	Hotspots data derived from other satellites	MODIS Landsat8	Global covering every typical vegetation type	Year-round
Land	Land cover type [—]	Goal: 30% (as classification error)	In-situ (Main)	Fukue Soyama Takagi Nasahara	Sasai Soyama Nasahara	Degree Confluence Project (DCP) data		Global covering every typical LCT	Every year (TBD)
			Other satellites (Main)		Soyama Nasahara	L1 radiance data of high resolution satellite Google Earth	Landsat8 AVNIR-2 etc.	Global covering every typical LCT	Seasonally (TBD)
	Land surface albedo [—]	Goal: 10%	In-situ (Main)	JAXA	Honda-Kajiwara Nasahara	Spectral reflectance data measured at flux tower, RC helocopter etc	Spectometer	forest : Yatsugatake, grass • forest : JaLTER, JapanFlux, PEN sites	Campaign /Year-round
			Other satellites (Main)		JAXA	LALB products derived from other satellites	MODIS VIIRS etc.	Global covering every typical LCT	Year-round
Atmosphere	Water cloud geometrical thickness [m]	Goal: 300m	In-situ (Main)	Kuji	lrie, Kuji	Cloud profile data Cloud bottom height obtained with ceilometer onboard Shirase	Falcon radar Ceilometer	Falcon sites Cruise course of Shirase between Japan and the Antarctica	Year-round Campaign
			Other satellites (Main)			Cloud top height data etc. measured from space	Calipso etc.	Global	Year-round

TABLE C3 Expected reference data for the validation of GCOM-C/SGLI research products

	Long-wave radiation flux [W/m2]	Goal: Downward flux: 10W/m ² , Upward: 15W/m ² (0.1deg., monthly ave)	In-situ (Main)	Hayasaka	Hayasaka	Longwave radiation data from radiation network Longwave radiation data from from flux network	Net radiometer etc.	BSRN, Skynet, JMA etc sites JaLTER, JapanFLux, PEN, Fluxnet sites	Year-round
			Other satellites Climatology (Main)			Clouds and aerosol data Global radiative flux data (ISCCP-FD) Surface Radiation Budget (GEWEX-SRB)	MODIS ISCCP GEWEX	Global	Year-round
	Short-wave radiation flux [W/m2]	Goal: Downward: 13W/m ² , Upward: 10W/m ² (0.1deg., monthly ave)	In-situ (Main)	Hayasaka	Hayasaka	Longwave radiation data from radiation network Longwave radiation data from from flux network	Net radiometer etc.	BSRN, Skynet, JMA etc sites JaLTER, JapanFLux, PEN, Fluxnet sites	Year-round
			Other satellites Climatology (Main)			Clouds and aerosol data Global radiative flux data (ISCCP-FD) Surface Radiation Budget (GEWEX-SRB)	MODIS ISCCP GEWEX	Global	Year-round
	Euphotic zone depth [m]	Goal: 30% (inferred from extinction coefficient)	In-situ (Main)	Hirata	Hirawake, Ishizaka, Suzuki, Kobayashi, <i>Saikaiku,</i> Tohoku, SeaBASS	In-situ measured optical data	PRR (Hirawake, etc.) TRIOS (Ishizaka, etc.) C-OPS (Suzuki)	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi-bay, Toyama-Bay	Campaigns
Ocean	Inherent optical properties [1/m]	Goal: Absorption coefficient @440nm: RMSE<0.25 and backscattering coefficient of phytoplankton@ 550nm: RMSE<0.25	In-situ (Main)	Hirata	Hirawake, Ishizaka, Suzuki, Frouin, SeaBASS	Pigment concentration data measured with fluorescense method and HPLC at Ship	Fluorescense method, HPLC	ECS, A-line, O-line, Funka-bay, Tokyo- bay,Seto Inland sea, Chukchi Sea, Bering Sea, North Pacific, Ise-bay, Akkeshi-bay, Toyama-Bay	Campaigns

	Ocean net primary productivity [mgC/m2/day]	Goal: 70% (monthly ave.)	In-situ (Main)	Hirawake, Ishizaka	Hirawake, Ishizaka, SeaBASS	ONPP derived from in- situ measurements	FRRF	ECS, A-line, O-line, Funka-bay, Tokyo-bay, Coast of Oita, Chukchi Sea, Bering Sea, North Pacific	Campaigns
	Phytoplankton functional type [—]	Goal: Classification error of dominant/non- dominan t spesies of large/small phytoplankton: 20%, or classification error of dominant functional type in a phytoplankton group: 40%	In-situ (Main)	Hirawake, Hirata	Hirawake, Ishizaka, Suzuki	Pigment concentration data measured with fluorescense method and HPLC at Ship	Fluorescense method, HPLC	ECS, A-line, O-line, Funka-bay, Tokyo-bay, Coast of Oita, Chukchi Sea, Bering Sea, North Pacific, Okhotsk, East and west of tohoku, east setonai-kai, Ise-bay	Campaigns
	Redtide [—]	Goal: 20% (as classification Error)	In-situ (Main)	Ishizaka	Ishizaka	Existence of red tide observed by human eyes	Human eye	Funka-bay, Tokyo-bay, Coast of Oita, East and west of tohoku, east setonai-kai, Ise-bay	Campaigns
	Multi sensor merged ocean color parameters [mg/m3]	Goal:-35~+50% (open sea), -50~+100% (coastal)	In-situ (Main)	JAXA	Hirawake, Ishizaka, Kobayashi, <i>Saikaiku etc</i> .	Pigment concentration data measured with fluorescense method and HPLC at Ship	Fluorescense method, HPLC	ECS, Ariake, A-line, O- line, Funka-bay, Tokyo- bay, Coast of Oita, Chukchi Sea, Bering Sea, North Pacific, Okhotsk, East and west of tohoku, east setonai-kai, Ise-bay	Campaigns
	Multi sensor merged sea surface	Goal: 0.8K	Other satellites (Main)	JAXA	JAXA	L2 SST products	MODIS, VIIRS	Global	Year-round
	temperature [°C]		In-situ (Main)		JAXA	GTS iQuam (buoy data for AMSR2 val)	Thermometer	GTS sites	Year-round
Cryosphe	Snow and ice classification [—]	Goal : 10%	Other satellites (Main)	Stamnes	AXA	L2 snow cover prd. (MOD10, MYD10) L2 snow cover product L1 radiance	MODIS VIIRS Landsat8 etc.	Global	Year-round
re			In-situ (Main)		JAXA	In-situ photograph taken at Buoy, Ship,	Web camera etc.	Buoys, Ships, etc.	Year-round

					etc. Photograph taken from Airplane			
Snow area in forest and mountain [—]	Goal : 30%	Other satellites (Main)	JAXA (Stamnes)	AXA	L2 snow cover prd. (MOD10, MYD10) L2 snow cover product L1 radiance	MODIS VIIRS Landsat8 etc.	Global	Year-round
		In-situ (Auxiliary)		AXA	In-situ photograph taken at ground sites etc. Photograph taken from Airplane	Web camera etc.	Mountain and forest sites, etc.	Year-round
Snow grain size of subsurface layer [µm]	Goal : 50%	In-situ (Main)	Stamnes, Aoki	Aoki	Snow grain size derived from in-situ snow pit data and optical measurements	Snow Pit Work Tools, FieldSpecFR, NIR Camera, IceCube etc.	Hokkaido, Greenland, Antarctica etc.	Campaign
Snow grain size of top layer [µm]	Goal : 50%	In-situ (Main)	Stamnes, Aoki	Aoki	Snow grain size derived from in-situ snow pit data and optical measurements	Snow Pit Work Tools, FieldSpecFR, NIR Camera, IceCube etc.	Hokkaido, Greenland, Antarctica etc.	Campaign
Snow and ice albedo [—]	Goal : 7%	In-situ (Main)	Stamnes, Aoki	Aoki	Albedo calculated based on in-situ measured optical data and snow pit work data	Snow Pit Work Tools, FieldSpecFR, NIR Camera, IceCube etc.	Hokkaido, Greenland, Antarctica etc.	Campaign
Snow impurity [ppmw]	Goal : 50%	In-situ (Main)	Stamnes, Aoki	Aoki	Snow impurity concentration estimated from in-situ measured optical data and also directly measured by filtering method	Spectrometer (FieldSpecFR etc.), Snow Pit Work Tools, Snow filteration system	Hokkaido, Greenland, Antarctica etc.	Campaign
Ice sheet surface roughness [—]	Goal:0.05 (*15)	Other satellites (Main)	Aoki	Aoki	Roughness estimated from other satellite data	MODIS, MISR, VIIRS Landsat8 etc.	Greenland, Antarctica	Annually
		Model (Main)			Roughness estimated through simulations of snow BRDF using radiative transfer code	Radiative transfer code (ARTMASS)	Greenland, Antarctica etc.	Annually
Ice sheet boundary	Goal : <500m	Other satellites Climatology (Auxiliary)	JAXA	JAXA	L1 radiance data	MODIS VIIRS Landsat8 etc.	Antarctica etc.	Monthly

monitoring [—]				

*1. Heritage levels from ADEOS-II/GLI study are shown by A-C; A: high heritage, B: Remaining issues, C: new or many issues remaining to be resolved

*2. The "release threshold" is minimum levels for the first data release at one year from launch. The "standard" and "research" accuracies correspond to full and extra success criteria of the mission. Accuracies are basically shown by RMSE.

Radiance data notes:

*3. Absolute error is defined as offset + noise; relative error is defined as relative errors among channels, FOV, and so on. Release threshold of radiance is defined as estimated errors from vicarious, onboard solar diffuser, and onboard blackbody calibration because of lack of long-term moon samples

Atmosphere notes:

*4. Vicarious val. on sea-surface temperature and comparison with objective analysis data

*5. Inter comparison with airplane remote sensing on water clouds of middle optical thickness

*6. Release threshold is defined by vicarious val. with other satellite data (e.g., global monthly statistics in the mid-low latitudes)

*7. Comparison with cloud liquid water by in-situ microwave radiometer

*8. Comparison with optical thickness by sky-radiometer (the difference can be large due to time-space inconsistence and large error of the ground measurements)

*9. Comparison with in-situ observation on monthly 0.1-degree

*10. Estimated by experience of aerosol products by GLI and POLDER

Land data notes:

*11. Defined with land reflectance~0.2, solar zenith<30deg, and flat surface. Release threshold is defined with AOT@500nm<0.25

*12. Night time 250m product can be produced by special observation requests of 1.6µm channel

*13. Evaluate in semiarid regions (steppe climate, etc.)

*14. Fires >1000K occupying >1/1000 on 1km pixel at night (using 2.2um of 1 km and thermal infrared channels)

Cryosphere notes:

Disclosure level (A-D) to be set by data provider	EORC researchers	GCOM PI	EarthCARE PI	Registered users	General users	Usage
(A) EORC Internal use only	ОК	-	-	-	-	 Cal & Val of SGLI products and/or applications for Earth sciences (such as scatter plots, statistics from which raw data cannot be reproduced) are possible to be published. It is necessary to describe the use of JAXA's database and the organization of data acquisition in the acknowledgement *1 Redistribution of the raw data is prohibited.
(B1) GCOM related PIs only	ОК	ОК	-	-	-	 Cal & Val of GCOM products and/or applications for Earth sciences are possible to be published. It is necessary to agree with data provider about how to acknowledge the favor (e.g., including data provider as a co-author or in the acknowledgement) and to describe the use of JAXA's database and the organization of data acquisition in the acknowledgement*1. Data use beyond the objectives of the GCOM mission is prohibited. Redistribution of the raw data is prohibited.
(B2) GCOM & EarthCARE PIs only	ОК	ОК	ОК	-	-	 Cal & Val of EarthCARE products and/or applications for Earth sciences are possible to be published. It is necessary to agree with data provider about how to acknowledge the favor (e.g., including data provider as a co-author or in the acknowledgement) and to describe the use of JAXA's database and the organization of data acquisition in the acknowledgement *1. Data use beyond the objectives of the EarthCARE & GCOM mission is prohibited. Redistribution of the raw data is prohibited.
(C) Registered users	ОК	ОК	ОК	ОК	-	 User registration is required. Applications for Earth sciences are possible to be published. It is necessary to submit an application form to JAXA prior to the publication. Also, it is necessary to to describe the use of JAXA's database and the organization of data acquisition in the acknowledgement*1. Redistribution of the raw data is prohibited.
(D) Open to the public (no limitation)	ОК	ОК	ОК	ОК	ОК	 It is necessary to describe the use of JAXA's database when using the data and publishing results. It is also necessary to report the results of publication to JAXA*1. Redistribution of the raw data is prohibited.

Table C4 Definition of the disclosure level (DL)

*1 follow the JAXA's policy on data use

Table C5 GCOM-C PIs in the previous RA

	PI_Name	Affiliation	Research title					
	Yoshiaki Honda	Chiba Univ.	Validation scheme development of the atmospheric corrected land reflectance, and algorithm development of LAI and fAPAR					
	Koji Kajiwara	Chiba Univ.	Algorithm development and validation of the global above-ground biomass, vegetation roughness index, and water-stress trend products					
	Masao Moriyama	Nagasaki Univ.	Algorithm development and improvement of the GCOM-C1/SGLI land surface temperature and the shadow index					
	Hideki Kobayashi	JAMSTEC	Research algorithm development of GCOM·Cl LAI/FAPAR, and NPP					
	Junichi Susaki	Kyoto Univ.	Algorithm development and validation of the land albedo by using the BRDF model					
	Kiyonari Fukue	Tokai Univ.	Global Land Cover Classification Using Surface Reflectance Data					
	Noriko Soyama Tenri Univ.		Development of algorithm and the validation scheme of the global land cover product					
	Masahiro Tasumi	Miyazaki Univ.	Development of the global evapotranspiration index algorithm as a GCOM-C land product					
	Kenlo Nasahara Tsukuba Univ.		Validation of land biological information from GCOM-C					
q	Shin Nagai	JAMSTEC	Acquisition of ground truth data for mapping of biophysical parameters of forest					
Lan	Takayuki Kaneko	Tokyo Univ. ERI	Construction and operation of the GCOM-C/SGLI real-time active volcano monitoring system, and eruption analysis					
	Kaoru Tachiiri	JAMSTEC	Investigation of the possibility to improve an Earth system model utilizing GCOM-C data					
	Kazuo Mabuchi	Chiba Univ.	Improvement of application technology of GCOM-C products by synthetic use of a climate model and satellite remote sensing data					
	Tomomichi Kato	Hokkaido Univ.	Environmental effects on photosynthetic activity analyses by the correlationship in the anomalies between SIF and satellite-derived hiotic and environmental variables					
	Masataka Takagi Kochi Univ. of Tech.		Mapping of tender green and autumn color by satellite data fusion					
	Christoph Rüdiger	Monash Univ.	Validation of land surface variables observed by GCOM-C and evaluation of their contribution to modelling activities over instrumented field sites in Australia					
	Yi Qin CSIRO		Simultaneous Aerosol and Surface BRDF Retrieval by Synergistic Utilization of GCOM- (/SCIL and Himawari/AHI					
	Koji Nakau	JAXA SAOC	Development and validation of the forest fire detection algorithm using SGLI					
	Reiji Kimura	Tottori Univ.	Development of global desertification map					
	Akihiko Kotera	Ibaraki Univ.	Development of monitoring system for flood damages in crop production using GCOM- C/SGLI time-series data					
	Takashi Nakajima Tokai Univ.		Global observations of cloud from GCOM-C SGLI for contributing climate change study and improving cloud science. Part II					
	Miho Sekiguchi	Tokyo Univ. of Marine Science and Technology	Development of remote sensing algorithm and assimilation system of atmospheric aerosols using SGLI					
	Sonoyo Mukai	The Kyoto College of Graduate Studies for Informatics	Improved algorithms for aerosol retrieval from multidirectional perspectives					
	Hiroshi Ishimoto	Meteorological Res. Inst.	Development of ice cloud and aerosol analysis schemes by improved particle scattering model					
ere	Makoto Kuji	Nara Women's Univ.	Retrieval and validation of cloud geometrical properties					
osphe	Hitoshi Irie	Chiba Univ.	Validation of the GCOM-C atmosphere products by the ground remote sensing observation network, SKYNET					
Atm	Kazuma Aoki	Toyama Univ.	Study of influence of spatial and temporal representativeness of aerosol optical properties by solar radiation measurements on in-situ validation of GCOM-C/SGLI					
	Akihiro Yamazaki	Meteorological Res. Inst.	Provision of validation data for GCOM-C atmosphere product validation from ground radiation measurement network					
	Tadahiro Hayasaka	Tohoku Univ.	Study of surface radiation budget product validation					
	Ryoichi Imasu	Tokyo Univ., AORI	Validation of aerosol and cloud microphysical properties using Russian Airplane- Laboratory					
	Kentaroh Suzuki	Tokyo Univ., AORI	Use of GCOM-C and other satellite observations for evaluations of cloud processes in global climate models					
	Jerome Riedi	Laboratoire d'Optque Atmosphérique	Remote sensing of clouds and aerosols properties from SGLI on GCOM-C1 Applying lessons learned from the A-Train to explore SGLI and EarthCARE					
	Mitsuhiro Toratani	Tokai Univ.	Study of SGLI ocean color atmospheric correction scheme					
ч	Taka Hirata	Hokkaido Univ.	Calibration, Validation and application of the SGLI/GCOM-C ocean algorithms					
Ocea	Robert Frouin	Scripps Institution of Oceanography	Vicarious calibration, algorithm development, and in situ data collection for SGLI ocean color remote sensing					
	Toru Hirawake	Hokkaido Univ.	Improvement and validation of net primary production and phytoplankton size distribution algorithms					

Ŀ	Joji Ishizaka	Nagoya Univ., ISEE	Acquisition of validation dataset for GCOM-C coastal products
Globo	KojigSuzukition Mission	Hokkaido Univ.	Highly frequent and accurate observations of marine phytoplankton pigments and light regimes for the Validation of SGLI/GCOM-Cl data
	Hiroshi Kobayashi	Yamanashi Univ	In-situ measurements for development of an atmosphere and in-water combined algorithm basing on classification of coastal and lake water optical property characterization
	Tomonori Isada	Hokkaido Univ.	Products validation for inherent and apparent optical properties, phytoplankton pigments, and net primary productivity derived from SGLI/GCOM-C in coastal waters
	Victor Kuwahara	Soka Univ.	Validation of Monthly Observations of Spectral Irradiance and Bio-optical Properties in the Coastal Waters of Sagami Bay
	David Antoine	Curtin Univ	Using the long-term BOUSSOLE time series measurements for S-GLI Ocean Colour System Vicarious Calibration, and validation of geophysical products
	Mati Kahru	Scripps Institution of Oceanography	Improved and merged estimates of ocean bio-optical properties derived with SGLI for the California Current
	Atsushi Matsuoka	Takuvik Joint International Laboratory (CNRS-U Laval)	Development of DOC/POC algorithms for Arctic water - Global impact of Arctic carbon cycle -
	Joaquim Goes	Columbia University (LDEO)	Towards robust estimations of nitrate and nitrate based new production in the global oceans using compound remote sensing
	Menghua Wang	NOAA NESDIS	Development and Implementation of Atmospheric Correction Algorithm for SGLI/GCOM- C Ocean Color Products
	Bryan A. Franz	NASA GSFC	NASA ocean color processing and data analysis support for SGLI
	Lachlan I.W. McKinna	James Cook University, Australia	Support for SGLI in NASA's Generalized Inherent Optical Properties Algorithm Framework
	Yosuke Yamashiki	Kyoto Univ.	Development of Water-quality conversion algorithm from Satellite information into Classification of Aquatic Vegetation and Surrounding Catchment to establish Global Lakes & Reservoir Repository (GLR) with UNESCO-IHP-IIWQ
dso	Teruo Aoki	Okayama Univ.	Improvement of GCOM-C/SGLI snow/ice algorithm, and validation by in-situ measurements and a numerical model
Cry	Knut Henrik Stamnes	Stevens Institute of Technology	GCOM/SGLI snow/ice products: Improvements and continued validation with postlaunch data