2.1.7 Field survey results

2.1.7.1 Field surveys

The M9.0 Great East Japan Earthquake — the world's fourth largest in recorded history — triggered massive tsunamis and caused widespread damage typical of such waves, including flooding to a depth of several tens of meters, submergence of coastal lowlands under sea/flood water, tsunami runups, damage to tsunami protection walls, urban devastation and bridge collapse. JAXA conducted a field survey between August 2011 and March 2012 to evaluate emergency observations and analysis performed in response to the disaster. The survey involved investigation of field survey results and satellite images in order to collect data for use in verifying the suitability of using satellite images to analyze such damage.

Damage is divided into the three categories of flooding, crustal movement/ground deformation and damage to artificial structures, and is further classified into three levels: a. clearly identifiable; b. identifiable from the surrounding conditions; c. not identifiable using satellite data. Due to the time that has passed since the disaster, damage that cannot be identified using satellite data must be investigated based on data provided by the national government and affected prefectures/municipalities and on results made public by organizations involved in such surveying. Against this background, candidate survey areas were chosen in consideration of data availability. However, areas that cannot be fully observed must be replaced with other candidate areas with similar conditions.

Clarifying how satellite images are actually used in disaster countermeasures and pinpointing factors that prevented such data from being used in this case will help to enhance satellite information usage in the future. Accordingly, relevant considerations for promoting the use of such information will be identified through interviews with a variety of businesses. Specifically, efforts will be made to clarify and summarize the purposes of its usage by commercial enterprises and organizations, appropriate timing for the provision of image information, the effects of actual satellite information usage, and related concerns and problems.

(1) Flood surveys

Flooded areas were selected as typical sites of tsunami damage based on the conditions and reasons shown below. For each condition, one or two sites will be observed to verify the accuracy of satellite image interpretation.

Sites to be selected	Reason	Site
1. Areas that were flooded despite the	Harbor breakwaters expected to protect against a big	Kamaishi City, Iwate
construction of strong harbor	tsunami were destroyed.	Ofunato City, Iwate
breakwaters at bay mouths in		
preparation for a tsunami		
2. Areas that were flooded despite the	Some districts where locals prided themselves on the	Taro district, Miyako City,
construction of sturdy harbor	safety of coastal levees built in preparation for a	Iwate
breakwaters or coastal levees in	tsunami along the Sanriku shoreline sustained serious	Kamaishi City, Iwate
preparation for a tsunami	damage.	
3. Normal flooding at harbors	Harbor facilities with breakwaters (to absorb the force	Kesennuma City, Miyagi
	of waves) and wharves	Kitaibaraki City, Ibaraki

Table 2.1-9 Selection of survey sites (flooding)

Sites to be selected	Reason	Site
4. Flooding at large-scale harbors built using modern techniques	Harbor facilities considered to have been built with all possible disaster countermeasures	Sendai Shinko, Miyagi Sendai Airport, Natori City, Miyagi
5. Flooding in urban areas with no harbor breakwaters or coastal levees	Severe damage in districts with no tsunami protection facilities	Yuriage district, Natori City, Miyagi Asahi City, Chiba
6. Running of water along relatively steep geographical features (villages experiencing fast running tsunami)	The northern coast of the Sanriku shoreline is dotted with communities stretching along rivers on the breaks of cliffs. The tsunami ran up these narrow areas and reached upper zones.	Settai district, Miyako City, Iwate Ryori district, Ofunato City, Iwate
7. Running of water over gently sloping fields (area sustaining severe damage from the tsunami running up the river)	The tsunami ran up relatively low-level wide rivers, causing severe damage to the area.	Ishinomaki City, Miyagi (Kitakami River) Natori City, Miyagi (Natori River)
8. Coastal forests	Coastal forests cultivated since the Edo period were destroyed by the tsunami.	Fudai district, Fudai Village, Iwate Nobiru Beach, Higashimatsushima City, Miyagi
9. Reclaimed land, landfill development	Areas developed by reclaiming land	Ishinomaki City, Miyagi
10. Tideland	Areas where natural geographical features were protected for environmental preservation were damaged by the tsunami.	Sendai City, Miyagi (Gamo Tideland)

Figure 2.1-67 Settai district, Miyako City, Iwate The site of a village and a bridge claimed by the tsunami (Photo courtesy of Mr. Hiroshi Sasaki)

Figure 2.1-68 Taro district, Miyako City, Iwate Damage to an area with tsunami barriers (Photo courtesy of Asia Air Survey Co., Ltd.)

(2) Crustal movement/ground deformation surveys

Sites where typical crustal movement and ground deformation occurred in the earthquake were selected based on the conditions and reasons shown below. For each condition, one or two sites will be observed to verify the accuracy of satellite image interpretation.

Sites to be selected	Reason	Site
1. Residential areas affected by subsidence	Residential areas experiencing subsidence due to the earthquake	Kesen district, Rikuzentakata City, Iwate
subsidence	due to the earthquake	Watanoha district, Ishinomaki City, Miyagi
2. Harbor facilities affected by subsidence	Harbor facilities experiencing subsidence	Hachinohe City, Aomori (industrial and
(industrial and fishing ports)	due to the earthquake	fishing ports)
		Kamaishi City, Iwate (industrial and
		fishing ports)
		Kesennuma City, Miyagi (industrial and
		fishing ports)
3. Previous beach sites	Popular bathing beaches were washed	Nehama Beach (Kamaishi City, Iwate)
	away.	Yuriage Beach (Natori City, Miyagi)
4. Previous scenic and historic spots	Popular scenic and historic spots were	Takatamatsubara (Rikuzentakata City,
	washed away.	Iwate)
		Remains of Nobiru Harbor
		(Higashimatsushima City, Miyagi)
5. Diastrophism caused by earthquake	Crustal movement related to the	Aoba Ward, Sendai City, Miyagi
vibration (new residential area)	earthquake caused extensive damage in	(Midorigaoka district)
	new hillside residential areas.	Yamamoto Town, Miyagi (Taiyo New
		Town)
6. Sediment damage	The earthquake caused landslides and	Marumori Town, Miyagi
(landslides, landslips, etc.)	landslips.	Shirakawa City, Fukushima
7. Liquefaction (residential areas)	Residential areas were heavily damaged	Itako City, Ibaraki
	due to liquefaction caused by the	Urayasu City, Chiba
	earthquake.	
8. Liquefaction (common land)	Common land was damaged due to	Mihama Ward, Chiba City, Chiba (Inage
	liquefaction caused by the earthquake.	Seaside Park)
9. Movement of the earth's surface	The surface of the earth moved	Document analysis
(horizontal and vertical)	(horizontal motion, uplift and subsidence)	
	due to the earthquake.	

Table 2.1-10 Selection of survey areas (crustal movement/ground deformation)

Figure 2.1-69 Harbor affected by subsidence in Kesennuma City, Miyagi (Photo courtesy of Asia Air Survey Co., Ltd.)

(3) Artificial-structure damage surveys

Damaged artificial structures were selected as typical sites of devastation caused by earthquakes and tsunamis based on the conditions and reasons shown below. For each condition, two or more sites will be observed to verify the accuracy of satellite image interpretation.

Sites to be selected	Reason	Site
1. Bay-mouth breakwaters	Although significant amounts of time and	Breakwaters at the mouth of Kamaishi
	money were spent constructing breakwaters	Bay in Iwate
	in preparation for massive waves, these	Breakwaters at the mouth of Ofunato
	structures were destroyed by the tsunami.	Bay in Iwate
2. Coastal levees	Many coastal levees built to protect	Otsuchi Town, Iwate
	residential areas from tsunami were	Ofunato City, Iwate
	destroyed and washed away, resulting in	
	extensive damage.	
3. Floodgates	Floodgates built to protect urban areas from	Iwaizumi Town, Iwate (floodgate at the
0	tsunami were destroyed and washed away,	mouth of the Omoto River)
	resulting in extensive damage.	Miyako City, Iwate (floodgate at the
		mouth of the Tsugaruishi River)
4. Breakwaters and quays at	Many local facilities of pivotal industries	Kuji Port in Kuji City, Iwate
industrial ports	were washed away.	Sendai Shinko in Sendai City, Miyagi
5. Breakwaters and quays at fishing	Many facilities related to the region's major	Kuwagasaki fishing port in Miyako City,
ports	industry of fisheries were destroyed and	Iwate
	washed away.	Kesennuma fishing port in Kesennuma
		City, Miyagi
6. River banks	River banks were destroyed by the tsunami	Rikuzentakata City, Iwate (Kesen River)
	running along rivers.	Ishinomaki City, Miyagi (Kitakami River)
		Watari Town, Miyagi (Abukuma River)
7. Roads	Many roads were closed due to flooding and	National Route 45 (Miyagino Ward,
	landslides caused by the tsunami.	Sendai City – Tagajo City)
		Joban Expressway (Mito IC – Naka IC)
8. Bridges	Many bridges located at the mouths of rivers	Kesen Bridge (Rikuzentakata City,
0. Dhuges	were washed away by the tsunami.	Iwate)
		Rokko Bridge (Namegata City, Ibaraki
		 Hokota City)
9. Railroads	Many railroads and stations were washed	Rikuzentakata Station (JR Ofunato Line)
2. Rumouus	away by the tsunami.	Higashimatsushima City (JR Sengoku
	away by the istitutin.	Line)
10. Aquaculture facilities	Many aquaculture facilities (fish preserves,	Yamada Bay, Iwate
	rafts, longlines, etc.) established in bays	Ofunato Bay, Iwate
	along the coast were destroyed and washed	Kesennuma Bay, Miyagi
	away by the tsunami.	
11. Municipal government buildings	Municipal government buildings serving as	Otsuchi Town Hall in Iwate
1 0 0	bases for local government were damaged.	Rikuzentakata City Hall in Iwate
		Minamisanriku Town Hall in Miyagi
12. Other public facilities	Public facilities such as prefectural hospitals	Takata, Iwate Prefectural Hospital
*	and fire stations were damaged.	Iwate Prefectural Otsuchi Fire Station
13. Large-scale retail facilities	Large-scale retail facilities serving an	Sendai Airport (Natori City, Miyagi)
C	unspecified number of customers were	
	damaged.	
14. Facilities for people requiring	People requiring support in the event of a	Sanriku no Sono special nursing home
support in the event of a disaster	disaster were particularly affected.	for the elderly (Ofunato City, Iwate)
15. Fire damage in urban areas	Urban areas were destroyed due to fires	Kesennuma City, Miyagi (residential
~	caused by the earthquake.	areas)
		Ichihara City, Chiba (complexes)
16. Other wooden structures	An old dam was destroyed by the	Sukagawa City, Fukushima (Fujinuma
	earthquake, and the community in the lower	Dam)
	reaches of the river was damaged.	

Table 2.1-11 Selection of survey areas (damaged artificial structures)

Figure 2.1-70 Minamisanriku Town, Miyagi Damaged town hall (Photo courtesy of Asia Air Survey Co., Ltd.)

Figure 2.1-71 Natori City, Miyagi Overview of flooding at Sendai Airport (Photo courtesy of Asia Air Survey Co., Ltd.)

(4) Satellite image usage survey

Organizations that actually utilized satellite images will be interviewed to clarify how they were used and what benefits they brought. Based on the results, a summary of user opinions regarding ideal image provision channels, timing, continuity and analysis support in addition to data usage will be made. Organizations to be interviewed include municipalities, universities and research institutions, fisheries/agricultural cooperatives and other associations, private corporations and NPOs.

(5) Identification of problems

The results of the surveys will be used to determine objects/conditions that are easy or difficult to identify in images, and to clarify optimal methods of satellite image provision to users. Based on this, current problems will be pinpointed and countermeasures for them formulated.

2.1.7.2 Evaluation of image analysis results

(1) Analysis of flooded areas using PALSAR data

Immediately after the disaster, intensive observation using the PALSAR satellite was started in light of its ability to perform observations in any weather conditions. Based on the data obtained (listed in Table 2.1-12), ongoing analysis of flooded areas was carried out.

		· · · · · · · · · · · · · · · · · · ·		
No.	Observation date	Incidence angle /orbit	Date of previous data	Incidence angle /orbit
1	2011.3.13	46.6 / Asc	2008.6.21	47.8 / Asc
2	2011.3.23	50.0 / Dsc	2009.11.12	41.5 / Dsc
3	2011.3.26	28.8 / Asc	2010.11.20	34.3 / Asc
4	2011.4.1	34.3 / Asc	2010.9.20	34.3 / Asc
5	2011.4.7	34.3 / Asc	2010.11.20	34.3 / Asc
6	2011.4.18	34.3 / Dsc	2011.3.3	34.3 / Dsc

Table 2.1-12 List of PALSAR data used for flood zone analysis

The results indicated that PALSAR had the capacity for successful analysis of flooded areas if appropriate observation conditions were provided. Ortho-/gradient-corrected SAR intensity images, normalized difference images and GoogleEarth images from before the earthquake were used to identify flooded areas. Here, normalized difference images can be found using the following equation:

 $NDIF = (DN_1 - DN_2) / (DN_1 + DN_2)$

Where NDIF is a normalized difference image, DN_2 is a DN value for a pre-disaster PALSAR image, and DN_1 is a post-disaster DN value. The normalized difference allowed identification of flood zones and facilitated analysis of areas that were difficult to deal with using SAR intensity images alone. GoogleEarth images from before the earthquake were also used to check pre-disaster land cover and support the identification of flooded areas.

A number of findings were obtained from the image analysis. First, it was learned that the use of images of paddy fields taken during the planting and growing seasons (around from May to July) should be avoided. This is because many tsunami-hit areas are located on plains where paddy fields grow, and when PALSAR data obtained during the rice planting and growing seasons are used for pre-disaster images, it is difficult to discriminate between tsunami-flooded areas and land covered with water used to irrigate paddy fields. Rain that fell during or immediately before observations created puddles in areas from which floodwaters had receded, and these were misidentified as flooding. In terms of PALSAR observation conditions, it was found that a large incidence angle could cause reduced accuracy in image analysis due to the influence of range ambiguity, and that a small incidence angle could also impair accuracy due to low spatial resolution. Figure 2.1-72 shows a flooded-area identification image and a normalized difference image as examples of PALSAR data.

Figure 2.1-72 Examples of results from PALSAR-based flood analysis (left: identification image; right: normalized difference image)