2014

2016

Hands-on training on basic SATAID functions and displaying RGBs/ASWind data

Taro HANDA Meteorological Satellite Center / Japan Meteorological Agency

3rd March 2023

Himawari-9

Himawari-8

Hands-on training on basic SATAID functions and displaying RGBs / ASWind data

It's time to practice using main SATAID functions in order to get used to its basic operations!

Then let's take a look at these case studies by SATAID modules.

- 1. Typhoon Hagibis (T1919) approaching Japan
 - 12 October, 2019 00:00 UTC 18:30 UTC
- 2. Flood in Papua New Guinea
 - 22 September, 2019 00:00 UTC- 23 September, 2019 18:30 UTC

Overview of SATAID case study modules

Overview of Case 1 Typhoon Hagibis (T1919) approaching Japan

Let's have a familiarity with the SATAID basic operations!

Changing and comparing multi band imagery (N3: Band 6, 2.3 μm)

Overview of Case 1 Typhoon Hagibis (T1919) approaching Japan

Overview of Case 1 Typhoon Hagibis (T1919) approaching Japan

Overview of Case 1 Typhoon Hagibis (T1919) approaching Japan

Overview of Case 2 Flood in Papua New Guinea

us clouds with small ice particle

Focus on Cb clouds which brought heavy rain and flood.

Overview of Case 2 Flood in Papua New Guinea

Summary

- JMA is developing SATAID that can display satellite imageries to analyze phenomenon such as typhoon.
- SATAID can display many types of data by simple operations such as RGB composites and so on.
- We challenged hands-on practical training of RGB case studies by using SATAID in this presentation.

Thank you for your participation!

Appendices

Himawari satellite imagery & products on websites

114°E

116°E

18°N

16°N

14°N

12°N

10°N

8°N

116°E

112°E

112°E

114°E

Himawari ASWind Monitor

ASWind (AMV-based Sea-surface Wind) for Tropical Cyclone Monitoring

Imagery products for Asia-Oceania Region

Anyone can get these products by Real-time JPEG imagery service through MSC website for Asia-Oceania region via the Internet.

http://www.data.jma.go.jp/mscweb/data/himawari/index.html

Providing imagery on MSC website

- Easy access to Himawari imagery
- Processed into sectored images in JPEG format for
 - Australia
 - Central Asia
 - Pacific Islands
 - Southeast Asia

and more

on real-time basis with animation in the last 23 hours

Imagery with heavy rainfall potential areas

<section-header>

Real-time JPEG Imagery Service on JMA/MSC Website for Oceania Region

JMA/MSC provide high resolution imagery with tiny file size via the Internet to be able to get even under an unstable Internet environment.

Satellite Products

Rapidly Developing Cumulus Area(RDCA)

• RDCA product detects <u>rapidly developing cumulus</u> with thunder and <u>area of disturbance to occur in near future</u>.

Rapidly Developing Cumulus Area (RDCA)

- ✓ Developing cumulus
- ✓ Current/Future disturbance is expected

Cumulonimbus Area

- ✓ A round top, except for anvil cirrus
- ✓ Strong upward flow is expected

Mid/Low Cloud Unknown Area

- Anvil cirrus
- Anvil cirrus hides clouds below

This product is provided to aviation users.

Atmospheric Motion Vectors (AMVs)

AMV is a satellite-derived product that is to estimate the altitude and motion vector of clouds from satellite imagery. It is already used for typhoon analysis , and be used as initial value by numerical forecast.

Himawari-8 AMVs derived from Imawari-8 imagery with new algorithm

Calculation of AMVs using target area observation is currently under consideration.

- In the past, AMV was calculated from the difference of images at 30-minute intervals in northern hemisphere using MTSAT-2.
- In southern hemisphere, calculated by images at 60-minute intervals.
- Now, AMV is calculated by using Himawari-8 full disk observation at 10-minute intervals.
- As not only temporal but also spatial resolution is higher than MTSAT-2, detection numbers of AMVs is increasing.
 - Improvement to temporal and spatial resolution.
 - Detection of low er layer.
 - Particularly, the data of the lower layer may be used for estimating the area of windstorm or strong wind.

19

High-resolution Cloud Analysis Information (HCAI)

- Cloud mask, type and top height (0.02 degree latitude/longitude grids)
- Currently, MSC provides selected area data to Hong Kong, Indonesia, Kiribati, Malaysia, Mongolia, Myanmar, Singapore, Tonga and Viet Nam via the Internet.

Cloud Mask

Clr Mixed Cloudy

Cloud Type

Clr Cb CH CM Cu Sc St/Fg Dense

Cloud Top Height

20 40 60 80 100 120 140 160 180 200 ×100m

Sea surface temperature

- Use of multi-spectral bands leads to distinguish the cold sea surface and the cloud
- High frequency observation provides more cloud free data

SATAID

What is SATAID?

- Originally developed by JMA's MSC (Meteorological Satellite Center) as an application software to display satellite imagery and NWP data for <u>training purposes</u>
- Provided to NMHSs as a JMA's contribution to WMO-CGMS
 Virtual Laboratory for Training in Satellite Meteorology (<u>VL</u>)
- Today, used also as an <u>operational tool</u> for daily weather analysis including tropical cyclone monitoring at JMA's HQ and local offices
- <u>Freely available</u> to NMHSs and easy to install
- Equipped with lots of functions

Introduction to SATAID

For more information on SATAID, please see Introduction Guide for SATAID.

https://www.wis-jma.go.jp/cms/sataid/file/QuickGuide_to_SATAID.pdf 24