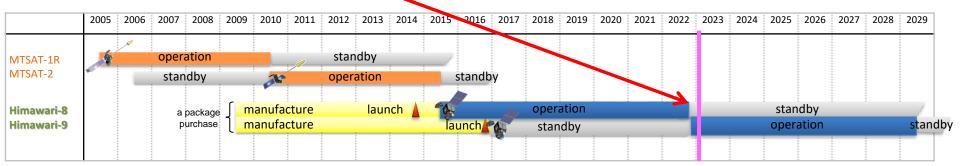
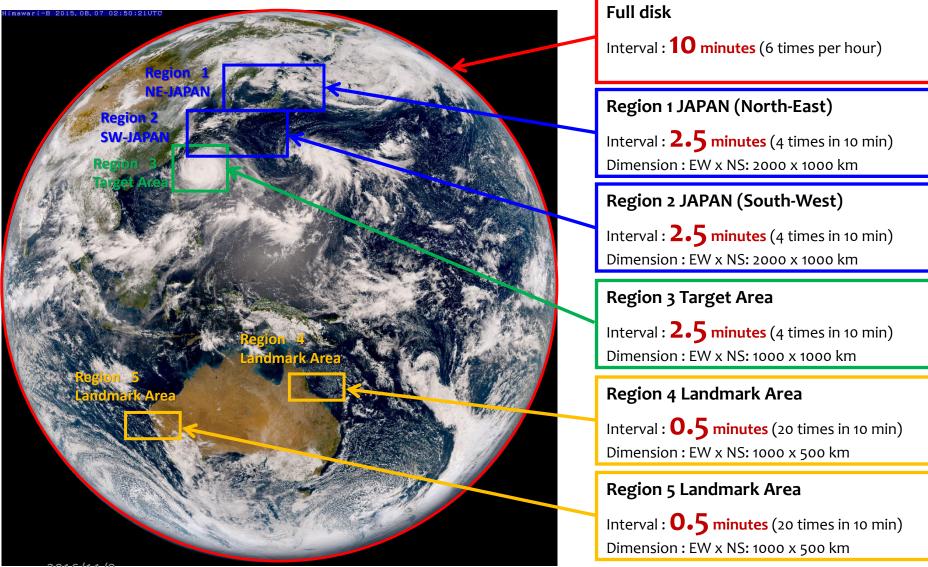

Kotaro BESSHO

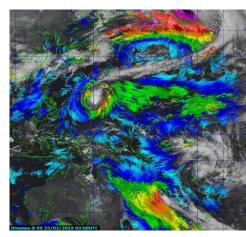
Satellite Program Division Japan Meteorological Agency Himawari-9


Himawari-8

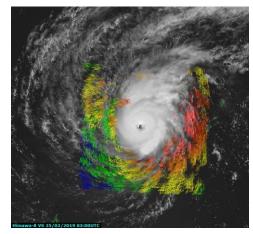
JMA's Overview of satellite data utilization for preparing extreme precipitation events


Himawari-8/9

Himawari-8 operational satellite 👡



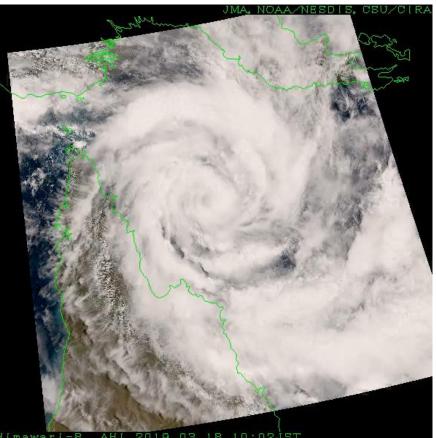
AHI Observation Modes



AMV-based Sea surface Winds (ASWinds)

- JMA produces Atmospheric Motion Vectors (AMVs) based on the cloud movement using consecutive Himawari-8 imagery. JMA has used the AMV-based Sea-surface winds ("ASWinds") for estimating sea surface winds near tropical cyclones since July 2017.
- Algorithm and verification results are reported in Nonaka et al. (2019) (https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hppub-eg/techrev/text21-3.pdf).

ASWinds from Full-Disk imagery at 0.64 μm (Visible) band (0300 UTC on 25 Feb. 2019)


ASWinds from small domain around a typhoon. (0300 UTC on 25 Feb. 2019).

- *Method*: Simple linear regression estimation using low-level AMVs around tropical cyclones
- *Time Interval*: 30 min (Full-Disk), 10 min (Small domain around typhoon)
- **Spatial Resolution :** 20 km (Full-Disk), 4 km (Small domain around typhoon)
- Imagery bands : 0.64 μm , 3.9 μm and 10.4 μm

HimawariRequest

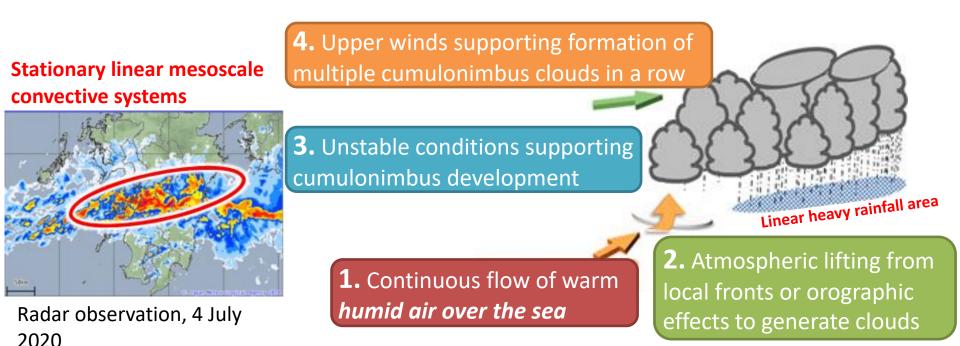
- HimawariRequest was started from January 2018 in cooperation with Bureau of Meteorology (BoM), Australia.
- International service for NMHSs in Himawari-8/9 coverage area to request Target Area observation (*1,000 x 1,000 km area every 2.5 minutes*).
- JMA expects this service to support *disaster risk reduction activities in the Asia Oceania* region.
- Status as of 17 Feb. 2023
 - Registration: 22 NMHSs
 - 166 requests implemented for TC, volcanic eruption, wild fires, etc.

HimawariRequest from BoM on 13-19 Mar. 2019

Recent disaster events in Japan

- In Japan, disasters caused by heavy rainfall occur almost every year.
- Many lives have been lost due to these disasters. (~100 people/year)
- In many cases, Stationary
 Linear Mesoscale
 Convective Systems
 (SLMCS), cause floods,
 inundation and landslides.

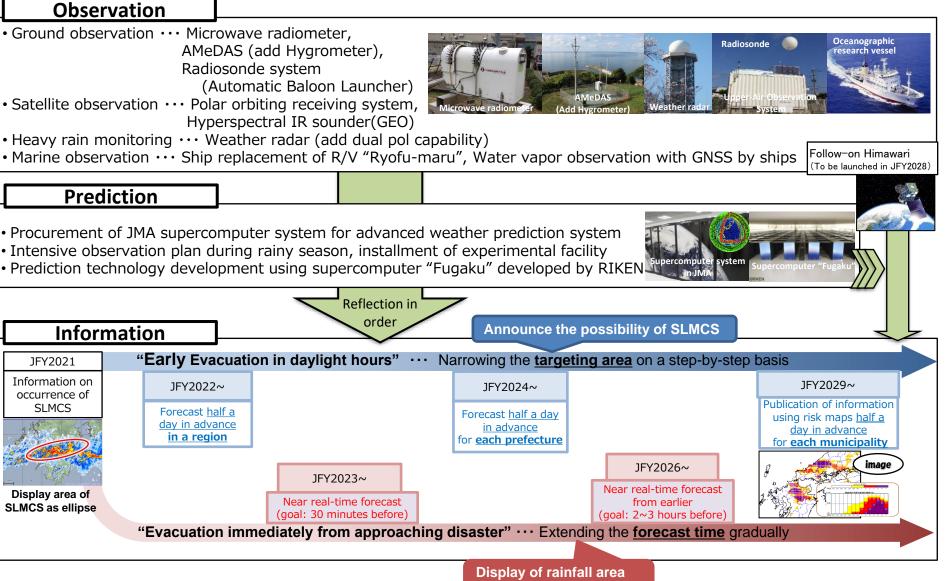
Photo from 2020 Kyushu floods



Houses submerged by the Kuma River (MLIT)

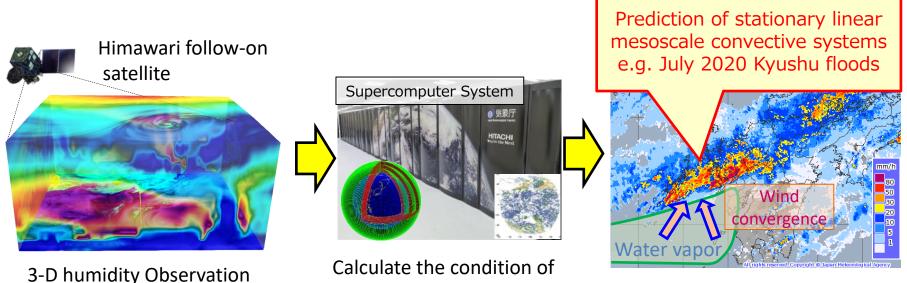
Extreme weather events that caused disasters (2020~)										
events	period	damage								
Heavy rainfall by Typhoon "TALAS"	September 2022	Land slide, flood and inundation								
Storm and heavy rain by Typhoon "NANMADOL"	September 2022	Storm surge, flood, landslide								
Heavy rainfall in August, 2022	August 2022	Flood and inundation								
Heavy rainfall by stationary front	August 2021	Flood and inundation								
Heavy rain in July, 2021	July 2021	Landslide and flood								
Heavy snowfall and storm	January 2021									
Heavy snowfall	December 2020									
Storm and heavy rain by Typhoon "HAISHEN"	September 2020	Storm surge, windstorm								
2020 Kyushu floods	July 2020	Flood								

Extreme weather events that caused disasters (2020~)


Mechanism of SLMCS and challenge for prediction

Challenge to improve prediction accuracy of SLMCS

- (1) Accurate observation of water vapor inflow
- (2) Improving prediction (NWP models) performance
- (3) Provision of <u>information</u> on probability of occurrence


Strengthen/acceleration of initiatives for improving prediction accuracy of SLMCS

due to SLMCS

What is new sensor for predicting extreme precipitation events?

- Essential understanding of the mechanics behind atmospheric humidity causing hazardous precipitation
- Current "Himawari-8/9" just can observe two-dimensional spread of clouds and water vapor
- Important role of <u>three-dimensional humidity information</u> from a <u>hyperspectral IR sounder in geostationary orbit</u>

atmosphere

Himawari Follow-on Program

- JFY2018: JMA has started to consider the next GEO satellite (Himawari-10) program.
 - "By JFY2023 Japan will start manufacturing the Geostationary Meteorological Satellite that will be the successor to Himawari-8/9, aiming to *put it into operation in around JFY2029*" Japan's "Basic Plan on Space Policy" (June 2020)
 - JMA will pursue seamless GEO satellite system by considering CGMS baseline and WMO Vision for WIGOS in 2040 to contribute the establishment of Geo-Ring observation.
- JFY2019: Worldwide Technology Trends Survey on Future Satellites/Instruments
- JFY2020: OSSE of hyperspectral IR sounder on JMA NWP systems was implemented.
- JFY2021: Internal, domestic and international user requirements will be summarized.
- JFY2022: RFI, RFP and Start of manufacturing of H-10 using supplemental budget
- JFY2028: Launch of Himawari-10
- JFY2029: Start of operation of Himawari-10

JFY (Apr – Mar(Next))	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8 Himawari-9	-	Manufacturing Launch Operational Launch In-orbit standby									У	In-orbit standby Operational									
follow-on (H-10)															Ma	nufa	<mark>ictui</mark>	ring	L	aun	ch

Concept of Himawari-10

• Mission Instrument(s)

- AHI-class or FCI-class VIS/IR imager (with optional improved capabilities)
- New instruments
 - ✓ Hyperspectral IR sounder
 - ✓ Space Environmental Suite by MIC/NICT as hosted payloads

Orbital location

- Around 140 degrees East
- Design lifetime
 - > 15 years (10-year in-orbit operation and 5-year in-orbit storage)

Communication subsystems

- Ka-band (18 GHz) for mission raw data downlink
- Ku-band (12-14 GHz) for telemetry, tracking & command
- Data Collection System (collection of in-situ meteorological data)

Thank you!!

The first image of Himawari-9 02:40 UTC, 24 Jan. 2017

True Color Reproduction imagery

This imagery was developed on the basis of collaboration between the JMA Meteorological Satellite Center and the NOAA/NESDIS GOES-R Algorithm Working Group imagery team.