Satellite-based Biomass Estimation of Forests

In forest-related projects, credits are generated through increased biomass accumulation, which enhances CO₂ absorption. Satellites are used to observe forests, estimate biomass levels, and calculate CO₂ absorption. Satellite-based biomass estimation is employed continuously to assess the project's impact, from credit generation to utilization and invalidation.

Service

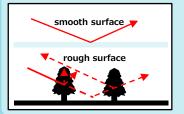
Service Overview

- Satellites observe forests, measuring forest distribution, canopy volume, and vertical structure.
- Data obtained from satellites is used to estimate forest biomass and calculate CO₂ absorption.

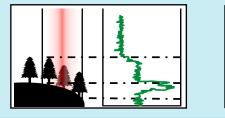
Observation Mechanism by Satellite

Example of Provided Service

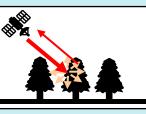
Institute


Tree Height Map Biomass Distribution Source: National Research and Developmer Source: JAXA

 SAR satellites distinguish between forested and non-forested areas based on surface roughness: smooth surfaces, such as water, reflect minimal radar back to the satellite, while rough surfaces, like forests, reflect a portion of the radar signal.


Agency, Forestry and Forest Products Research

• By analyzing LiDAR reflection waveforms and volume scattering from SAR satellites, the physical characteristics of forests can be determined, enabling biomass estimation.


Methods for Distinguishing Forest and Non-Forest Areas Using SAR Satellites

Forest Physical Properties Assessment Using Satellite LiDAR

Representation of Volume Scattering in SAR Satellites

Satellite-based Evidence for Mid-Season Drainage/AWD **Implementation in Fields**

In rice cultivation, extending the mid-season drainage period (in Japan) or implementing AWD (Alternate Wetting and Drying, in other countries) reduces methane emissions, enabling carbon credit generation. Satellites monitor the fields, providing evidence for project implementation. Continuous satellite-based observation verifies the project's progress from credit generation to utilization and invalidation.

Service

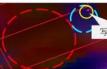
■ Service Overview

Method for Identifying the Presence/Absence of Ponding in the Fields

• Satellite imagery is used to detect Ponding No ponding the presence or absence of ponding in the fields, and the demonstration of this service is underway.

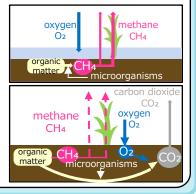
Observation Mechanism by Satellite

• Using the property of SAR satellites, where the radio wave reflection characteristics differ due to variations in ground roughness, the presence or absence of ponding in the fields is identified.


• In particular, L-band SAR, with its relatively long wavelength, can penetrate through rice plants, enabling the detection of ponding.

Methodology for Extending Mid-Season Drainage Periods (Japan) and Alternate Wetting and Drying (AWD, elsewhere)

- Mid-season drainage/AWD involves draining water and allowing the field surface to dry, which helps prevent excessive tillering (branching near the base) and reduces water usage, as well as methane emissions.
- In low-oxygen environments, microorganisms in the soil produce methane. Flooding rice paddies reduces oxygen, promoting methane production.
- Mid-season drainage/AWD increases soil oxygen, suppressing microbial activity. Extending the drainage period or implementing AWD reduces methane emissions, enabling carbon credit registration.


Example of **Provided Service**

Color-coding the Presence/Absence of Water in the Fields

Source : Jizoku

Mechanism of

Methane Generation

Satellite observation for monitoring the integrity of credit-eligible projects

Satellite-based Seagrass Mapping

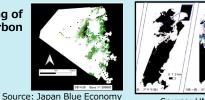
In the seagrass restoration and conservation project, the increase in seagrass area leads to a higher CO₂ absorption rate, generating credits. Satellite-based monitoring is used to track seagrass locations and areas and estimate CO₂ absorption. Satellite observation will continue throughout the entire process, from the generation of credits to their use and invalidation and will consistently assess the ongoing impact of the project.

Service

■ Service Overview

- Blue Carbon Satellite observation data, along with ground survey data as training data, are used to classify seagrass beds and other areas, enabling the creation of a detailed seagrass map.
- Research and demonstration of the above services are underway.

Observation **Mechanism by Satellite**


 By using multi-band images from optical satellites, it is possible to identify the location of seagrass beds, as their radiance is darker compared to sandy areas or rocky reefs.

Identification of Seagrass Beds Based on Differences in Radiance

■ Example of Provided Service

Technology Research Association

• The CO₂ absorption rate is then estimated based on the seagrass area.

■ What is blue carbon?

Mapping of

- Blue carbon refers to carbon that is absorbed by coastal and marine ecosystems and stored in their soils and biomass.
- Blue carbon has long-term sustainability for carbon sequestration, ranging from hundreds to thousands of years. Protecting blue carbon ecosystems not only contributes to climate change mitigation but also helps preserve biodiversity.
- For calculating CO₂ absorption based on the distribution area, satellite observation is effective for mangrove forests and seagrass beds.

Main Ecosystems of Blue Carbon

Source: Earthene

Source: UMITRON

Satellite-based Land Uplift Observations in Peatlands

In peatland rewetting projects, groundwater levels are restored to suppress the aerobic decomposition of peat, thereby reducing CO₂ emissions and generating credits. By observing land uplift with satellites and estimating groundwater levels, rewetting is carried out efficiently, and continuous estimations are made from credit generation to utilization and invalidation.

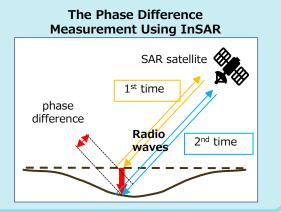
Service

■ Service Overview

- Research and demonstration of a service that uses satellites to monitor land uplift caused by the decline in groundwater levels in peatlands over a wide area are underway.
- The service estimates groundwater levels based on the correlation between ground displacement and the values from on-site groundwater level sensors.

Observation Mechanism by Satellite

- The distance changes between the satellite and the ground surface are measured by performing an interferometric analysis of two images taken at different times using the radio waves emitted by the SAR satellite and calculating the phase difference (shift in the cycle).
- Other methods involve using the fact that SAR satellites' radio waves hardly return from smooth surfaces such as water, while they partially return from rough surfaces like soil. This allows for the mapping of peatland topography and watercourses. By combining satellite-observed precipitation data with onsite surveys to create hydrological data, groundwater levels can be inferred.


■ What is a peatland?

- Peatlands are a type of soil formed by the accumulation of plant material that has not decomposed in water.
- They store significant amounts of CO₂ but are highly susceptible to combustion when aroundwater levels decrease

and they dry out.

Japan

<u>Satellite observation for monitoring the</u> integrity of credit-eligible projects

> Example of **Provided Service**

> > **CO₂** Concentration

Distribution

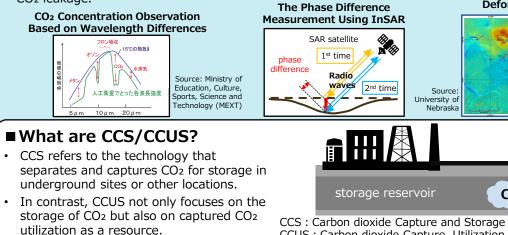
Visualization of Ground

Deformation

CO₂

Satellite-based CO₂ Leakage Monitoring for CCS and CCUS

The CCS and CCUS projects reduce CO₂ emissions by storing CO₂ underground or in other locations, generating carbon credits. Satellite observation is used to extensively verify that the stored CO₂ remains securely contained without leakage. Satellite-based observation of CO₂ storage sites is continuously employed to assess the project's impact, from credit generation to utilization and invalidation.


Service

Service Overview

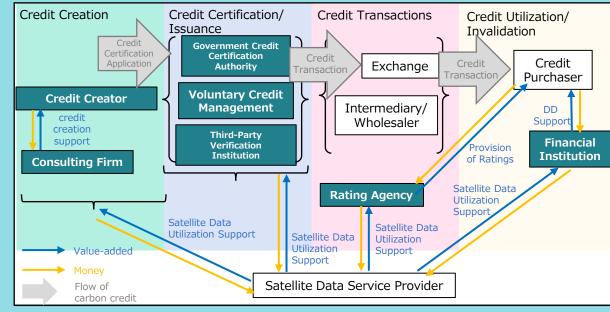
Research is being developed by using satellite observations to monitor CO₂ concentration distribution and ground deformation, enabling the detection of CO₂ leakage from underground storage.

Observation Mechanism by Satellite

- Using an atmospheric spectroscopic sensor, CO₂ concentration is observed by analyzing the specific colors absorbed and the depth of absorption inherent to the gas species.
- Other methods involve using SAR satellite data to perform interferometric analysis of two images taken at different times, measuring surface displacement from phase differences to check for CO₂ leakage.

CCUS : Carbon dioxide Capture, Utilization and Storage

Comparison with conventional information gathering methods


						5
	Imaging/ Observation	Sensor	On-site survey	Drone	Aerial photo	Satellite
	Target Project	 Peatland rewetting projects CCS/CCUS projects 	 Forest-related projects Mid-season drainage extension/AWD projects Blue carbon-related projects 			Applicable to all of the projects listed on the left
	Regular or On-demand	Regular	On-demand	On-demand	On-demand	Regular
	Required Time/Cost	Depends on the measurement frequency	On-demand imaging/observation are time consuming and expensive			Depending on the revisit cycle
		Sensor fees are determined by the installation costs and the number of sensors				The cost per unit of area is low
	Granularity of observation (Area or point observation)	anularity of bservation (Area or or boint Drones photo projects (approx. 5m) Surveys (approx. 5m) Sarveys Sensors Drones photo			ue carbon- ted projects rox. 5~20m) cellite a (large)	Forest-related/ Peatland rewetting projects (approx. ~100m)
		approx.1cm~ approx.3cm~1m approx. several tens of cm~100m				
	Objectivity	Without human intervention, and with high objectivity	With human intervention, and low objectivity			Without human intervention, and with high objectivity
	Observation accuracy	High observation acc	Lower observation accuracy compared to the methods on the left			

Target Users and Applications

■ Target Users

- **Credit creators**: By utilizing satellite data as evidence for calculating project impacts and implementation, they can **create credits with higher transparency** than conventional methods.
- Credit certification and verification institutions: By utilizing satellite data to monitor the impacts and progress of projects, they can certify credits. Reliable verification is possible based on objective and consistent data.
- Rating agencies: By using satellite data to evaluate project impacts, they can assign ratings to credits. Unbiased information will contribute to preventing greenwashing.
- Financial institutions: By incorporating satellite data into the evaluation of project impacts, it supports due diligence. Objective data allows for informed decision-making and reduces the risk of greenwashing.

Transaction Flow Between Users and Carbon Credits

Evaluation of Environmental Track the History of Water Monitor CO₂ Absorption Blue Carbon Dependency and **Management in Rice Fields** on a PC **Environmental Impact** Potential Map 台岸藻場面積 ブルーカーボンのボテンシャルマップ Source: Think Nature Source: Think Nature Source: Tenchiiir Companies Providing Similar Services **Support for Credit Generation** Credit Certification/Issuance **Biomass Estimation Biomass Estimation** Verra/Pachama Ridge-i, Ernst & Young ShinNihon LLC, **Evidence for Mid**sustainacraft, Hitachi Systems, Archeda, Agritrio, Season Drainage/ etc. AWD **Evidence for Mid-**Verra/Mantle Labs Season Drainage/ AWD Sagri/Faeger, Co/Archeda, Tenchijin, Credit Transactions Green Carbon, etc. **Biomass Estimation** Seagrass Bed BeZero Carbon/Plane, Renoster, Sylvera, etc. Mapping Archeda, UMITRON, Seagrass-Watch, Global Credit Utilization Support Mangrove Trust, DHI, etc. (Due Diligence) Land uplift **Biomass Estimation** observations in Pachama, Orbify, Kanop, Treeconomy, peatlands sustainacraft, Earth Blox, Envirosense, etc. Sumitomo Forestry/IHI, Hokkaido Seagrass Bed University/JST/JICA, MIT/Singapore, etc. Mapping CO₂ Leakage Earth Blox Monitoring for Land uplift CCS/CCUS observations in TAISEI CORPORATION, INNO-CCUS, Halliburton, peatlands GEUS, U.S. Environmental Protection Agency, etc. sustainacraft/Nippon Koei

Example of Provided Service